

# DREDGED MATERIAL MANAGEMENT PROGRAM

**State of Washington**

*including*

**Puget Sound and Inland Washington State,  
Grays Harbor, Willapa Bay, and the Pacific Coast  
Columbia River Basin**

# BIENNIAL REPORT

Dredging Years 2024/2025

PREPARED BY THE DMMP AGENCIES

December 4, 2025

Sarah Benson, U.S. Army Corps of Engineers  
Heather Fourie, U.S. Army Corps of Engineers  
Brian Hester, U.S. Army Corps of Engineers



WASHINGTON STATE DEPARTMENT OF  
**NATURAL RESOURCES**



# Table of Contents

---

|                                                                            |    |
|----------------------------------------------------------------------------|----|
| Table of Contents.....                                                     | 2  |
| List of Tables .....                                                       | 3  |
| List of Figures .....                                                      | 3  |
| List of Appendices .....                                                   | 3  |
| List of Abbreviations .....                                                | 4  |
| 1       Introduction & Project Overview .....                              | 5  |
| 1.1    Introduction.....                                                   | 5  |
| 1.2    Projects Overview.....                                              | 5  |
| 1.3    DMMP Process and Timeline .....                                     | 6  |
| 2       DY24/25 Project Summary & Data Assessment .....                    | 8  |
| 2.1    Ranking.....                                                        | 8  |
| 2.2    Sampling and Analysis Plans .....                                   | 8  |
| 2.3    Chemical Testing.....                                               | 9  |
| 2.4    Biological Testing – Bioassays.....                                 | 9  |
| 2.5    Biological Testing – Bioaccumulation .....                          | 10 |
| 2.6    Suitability Determinations.....                                     | 10 |
| 2.7    Antidegradation Evaluations.....                                    | 11 |
| 2.8    Tier 1 Determinations .....                                         | 11 |
| 2.9    Recency Extensions .....                                            | 12 |
| 2.10   Project Revisions.....                                              | 12 |
| 2.11   Special Studies.....                                                | 12 |
| 2.12   Supplemental Suitability Determinations .....                       | 13 |
| 3       Non-standard and/or Complex Projects .....                         | 14 |
| 3.1    Project Characterization .....                                      | 14 |
| 3.2    Unauthorized Dredging and Disposal .....                            | 14 |
| 3.3    Disposal Activity and Site Use.....                                 | 14 |
| 3.4    Cumulative DMMP Disposal Site Use and Monitoring Program .....      | 15 |
| 3.5    Monitoring Status at Non-dispersive Sites .....                     | 16 |
| 3.6    DY24/25 Post-Disposal Site Monitoring .....                         | 16 |
| 3.7    Endangered Species Act (ESA) Consultation.....                      | 18 |
| 4       References .....                                                   | 19 |
| Tables                                                                     | 20 |
| Figures                                                                    | 21 |
| Appendix A. DY24/25 Guideline Values .....                                 | 2  |
| Appendix B. Bioassay Performance Standards and Evaluation Guidelines ..... | 1  |
| Appendix C. DY24/25 Marine and Freshwater Guideline Exceedances .....      | 1  |

## List of Tables

---

- Table 1. DMMP Evaluation Activities Completed in DY24
- Table 2. DMMP Evaluation Activities Completed in DY25
- Table 3. DMMP Evaluation Activities Initiated in DY24/25 but ongoing into DY25
- Table 4. DMMP Process Times
- Table 5. DY24/DY25 Project Rank Changes
- Table 6. DMMP Sampling Requirements
- Table 7. DY24/25 Projects with Approved Sampling Plans
- Table 8. DY24/25 DMMU Chemical Testing Summary of Exceedances
- Table 9. Dioxin Guidelines Utilized to Evaluate DY24/25 Projects
- Table 10. DY24/25 Bioassay (Toxicity) Testing Summary
- Table 11. DY24/25 Suitability Determinations
- Table 12. DY24/25 Projects with Z-Sample Analysis
- Table 13. DY24/25 Tier 1 Determinations
- Table 14. DY24/25 Recency Extensions
- Table 15. DY24/25 Project Revisions
- Table 16. DY24/25 Special Studies
- Table 17. DY24/25 Supplemental Suitability Determinations
- Table 18. Project-Specific Dredged Material Disposal and Beneficial Use Placement, DY24
- Table 19. Project-Specific Dredged Material Disposal and Beneficial Use Placement, DY25
- Table 20. DY24/25 Disposal/Placement Summary
- Table 21. Cumulative Site-Use Summary
- Table 22. Puget Sound Nondispersive Sites: Cumulative Disposal Volumes vs. Site Capacity
- Table 23. Puget Sound Disposal Site Monitoring History
- Table 24. Cumulative Disposal Volumes since Last Monitoring and Projected 2024/2025 Monitoring Events

## List of Figures

---

- Figure 1. DY24 Project Locations
- Figure 2. DY25 Project Locations
- Figure 3. DY24/25 disposal volumes in Puget Sound
- Figure 4. DY24/25 disposal volumes in Grays Harbor
- Figure 5. DMMP cumulative disposal volumes in Puget Sound 1989 – 2025
- Figure 6. DMMP cumulative disposal volumes in Grays Harbor 1996 – 2025

## List of Appendices

---

- Appendix A. DY24/25 Guideline Values
- Appendix B. Bioassay Performance Standards and Evaluation Guidelines
- Appendix C. DY24/25 Marine and Freshwater Guideline Exceedances

## List of Abbreviations

---

|         |                                                 |
|---------|-------------------------------------------------|
| BiOp    | Biological Opinion                              |
| BT      | Bioaccumulation Trigger                         |
| COCs    | Chemicals of Concern                            |
| CY      | Cubic Yard                                      |
| Dioxin  | Dioxins and furans                              |
| DMMO    | Dredged Material Management Office              |
| DMMP    | Dredged Material Management Program             |
| DMMU    | Dredged Material Management Unit                |
| DNR     | Washington Department of Natural Resources      |
| DY      | Dredging Year                                   |
| Ecology | Washington Department of Ecology                |
| EPA     | Environmental Protection Agency                 |
| ESA     | Endangered Species Act                          |
| ML      | Maximum Level                                   |
| MPR     | Management Plan Report                          |
| MPRSA   | Marine Protection, Research and Sanctuaries Act |
| NMFS    | National Marine Fisheries Service               |
| PAH     | Polynuclear Aromatic Hydrocarbon                |
| PSDDA   | Puget Sound Dredged Disposal Analysis           |
| PSET    | Portland Sediment Evaluation Team               |
| QA/QC   | Quality Assurance/Quality Control               |
| SAP     | Sampling and Analysis Plan                      |
| SDM     | Suitability Determination Memorandum            |
| SMARM   | Sediment Management Annual Review Meeting       |
| SMS     | Sediment Management Standards                   |
| SRKW    | Southern Resident Killer Whale                  |
| SSD     | Supplemental Suitability Determination          |
| SL      | Screening Level                                 |
| SQS     | Sediment Quality Standard                       |
| TEQ     | Toxicity Equivalence                            |
| TBT     | Tributyltin                                     |
| USACE   | US Army Corps of Engineers                      |
| USFWS   | US Fish and Wildlife Service                    |
| WDFW    | Washington Department of Fish and Wildlife      |

# 1 Introduction & Project Overview

---

## 1.1 Introduction

The Dredged Material Management Program (DMMP) is an interagency program that manages dredged material in the State of Washington. The four cooperating agencies are: U.S. Army Corps of Engineers (USACE), Seattle District; U.S. Environmental Protection Agency (EPA), Region 10; Washington Department of Ecology (Ecology); and Washington Department of Natural Resources (DNR). The DMMP agencies apply dredged material evaluation guidelines to federal and permitted projects in Washington State and co-manage the DMMP open-water dredged material disposal sites. The dredged material evaluation guidelines were originally developed for the Puget Sound Dredged Disposal Analysis (PSDDA) program in the 1980s and expanded to cover Grays Harbor and Willapa Bay in 1995. The DMMP agencies modify the evaluation guidelines, as needed, through an annual review process.

The DMMP evaluates projects in Puget Sound, on the Washington Coast, non-port projects on the Washington side of the Columbia River, and all other water bodies within the state of Washington. Port projects on the Washington side of the Columbia River and all projects on the Oregon side are evaluated by the Portland Sediment Evaluation Team (PSET). PSET is headquartered at the USACE Portland District, and functions similarly to the DMMP for Oregon projects.

This report summarizes DMMP activities for Dredging Years (DY) 2024 and 2025. As defined by the DMMP agencies, DY24 covers the period from June 16, 2023 to June 15, 2024. DY25 covers the period from June 16, 2024 to June 15, 2025.

## 1.2 Projects Overview

During DY24/25 the DMMP agencies completed a suitability determination or other action (**Tables 1 and 2**) for a total of 36 **projects** (23 in DY24; 13 in DY25). Many projects included full characterizations, intended to assess the suitability of the proposed dredged material for open-water disposal and to evaluate the quality of the sediment to be exposed by dredging. Full characterizations result in a suitability determination memorandum (SDM), signed by the DMMP agencies, that summarizes the results of the characterization and provides an official determination regarding suitability for open-water disposal. Other common DMMP actions include volume revisions, recency extensions, Tier 1 evaluations, and standalone antidegradation evaluations.

Project locations for DY24 and DY25 are plotted in **Figures 1 and 2**, respectively.

Another 16 projects began the DMMP evaluation process during or before DY24/25, but suitability determinations or other actions for these projects were not completed before the end of DY25. These projects are listed in **Table 3** but are not discussed in the remainder of the report.

Chapter 2 presents an overall assessment of sampling and testing activities, including tables related to project ranking, sampling, testing, results, and suitability determinations.

Chapter 3 provides details of projects that were complex in nature or where the application of best professional judgment by the agencies was necessary.

Chapter 4 presents dredged material disposal information and reviews disposal-site monitoring activities during DY24/25. The status of coordination under the Endangered Species Act is also discussed.

Appendices A and B include the chemical and biological evaluation guidelines used during DY24/25.

Appendix C tabulates exceedances of those guidelines.

## 1.3 DMMP Process and Timeline

For many dredging projects, DMMP sediment sampling and testing are a part of the regulatory requirements under Section 404 of the Clean Water Act. One of the most common questions from dredging projects/applicants is how much time is required to perform DMMP sampling and testing and ultimately obtain a suitability determination or equivalent decision document (the “DMMP Process”).

**Table 4** summarizes the time required for four common sequential tasks of the DMMP process for a total of 18 DY24/25 projects that conducted DMMP sampling and testing and culminated in a suitability determination, antidegradation determination, or advisory determination memo. Each task is described in more detail below. Many factors can affect the time required, and both the project applicant and DMMP must be actively engaged to achieve a successful outcome in a timely manner.

- **Task 1 - Sampling and Analysis Plan (SAP) Development.** The applicant prepares a draft SAP for characterization of the proposed dredged material. The time required for SAP development is highly variable and almost completely within control of the dredging applicant.
- **Task 2 - SAP Review, Revisions, and Approval.** DMMP agencies review the draft SAP and provide comments to the applicant; the applicant revises the SAP to address the comments, and the revised SAP is submitted to the agencies for approval. More than one round of revision is frequently needed to adequately address all agency comments. Once the SAP is finalized, an approval letter or email message is sent to the applicant. At that point, sampling and analysis may proceed.
- **Task 3 - Sampling and Analysis and Data Compilation/Interpretation.** The applicant conducts field sampling and chemical/biological analysis following the procedures documented in the approved SAP. At the completion of sampling and testing, the applicant compiles and submits a draft data report to the DMMP. Sampling, chemical and/or biological testing, and draft report preparation consume a substantial portion of the overall DMMP process.
- **Task 4 - Data Report Review/Revisions and Suitability Determination Completion.** Upon receipt of the draft data report, the DMMP agencies review the data report for completeness and accuracy, provide review comments to the applicant, and if required, the applicant revises the data report to address the comments. Multiple revision/review cycles of the data report may be needed to ensure that the report addresses all data questions and issues. Once the data report has been finalized, the Dredged Material Management Office (DMMO) drafts a SDM for review and signature by the DMMP agency representatives. The suitability determination is a Memorandum for Record documenting the determination reached on the suitability/unsuitability of each of the dredged material management units for unconfined open-water disposal. The suitability determination also includes an evaluation of the sediment surface that will be exposed by dredging in relation to the State of Washington’s antidegradation standard. For projects with upland disposal, a standalone antidegradation determination is prepared instead of a suitability determination. For special studies, an advisory (or similar) determination is prepared.

Summary statistics (median, minimum, and maximum number of days) are available for tasks 2, 3, and 4 described above; task 1 (draft SAP development) is primarily an applicant-driven activity and is not tracked by the DMMP.

Overall (for DY24/25 projects), the median total elapsed time required for tasks 2, 3, and 4 was 429 days (ranging from 180 to 702 days), with the largest amount of time consumed by sampling, testing (chemical and biological), and draft data report preparation by the applicant (task 3). Multiple factors can impact task 3, including 1) weather; 2) sampling difficulties; 3) laboratory capacity and turn-around

time; 4) QA problems arising during chemical and biological testing; 5) data validation; 6) decision-making by the applicant based on testing results; and 7) report compilation time.

Tasks 2 (SAP review, revisions, and approval) and 4 (data report revisions and SDM completion) require project and DMMP engagement, but they were still generally much shorter in duration than task 3. More than half of the SAPs required two or more revision and review cycles. Factors influencing the time required for tasks 2 and 4 include project complexity and contractor/consultant knowledge/expertise.

## 2 DY24/25 Project Summary & Data Assessment

---

### 2.1 Ranking

Project ranking is based on the likelihood of sediments in a project area having concentrations of chemicals of concern (COCs) with the potential to cause adverse biological effects. Sampling and analysis requirements are determined, to a large extent, by the project ranking. The DMMP agencies have established ranks for geographic areas (e.g., Elliott Bay) and activities (e.g., marinas) based on historical data or the presence of active sources of contamination. Ranking guidance for Puget Sound, the Columbia River, Grays Harbor and Willapa Bay can be found in the 2025 DMMP User Manual (DMMP, 2025).

Downward adjustments to project ranking can be made if changes in the sediment chemical quality are demonstrated by two or more sampling events. Projects that underwent DMMP sediment sampling and testing in DY24/25 and had an adjustment to their initial rank are shown in **Table 5**. In this biennium the DMMP made ranking determinations for one large federal navigation project that do not easily fit into these general ranking categories.

Ranking decisions define three aspects of characterization: field sampling density, the number of analyses, and recency. These three variables are applied to proposed dredge volumes to assess the potential risks for placing material at an open-water disposal site. If one rank is applied to a large project with varied influences and conditions, it's likely that areas of lower risk will be over-characterized while areas of greater risk are under-characterized. The DMMP evaluated current and historical information to adopt project-specific rankings for the Swinomish Federal Navigation channel. These project-specific ranks incorporate the relevant and unique aspects of each project and setting and are intended to most efficiently characterize channel sediments to inform appropriate placement of dredged material, as described below.

Swinomish Federal Navigation Channel. Previously ranked Low throughout, the DMMP has developed a project-specific rank for the Swinomish Channel with the following characterization guidelines:

1. Four DMMUs, one encompassing each of the following channel sections:
  - a. Southern Entrance (approximately stations 0+00 to 90+00)
  - b. Southern Main Channel (approximately stations 90+00 to 190+00)
  - c. Main Channel (approximately stations 190+00 to 400+00)
  - d. Northern Entrance (approximately stations 400+00 to 690+00)
2. A minimum of three grab samples per DMMU that target current shoals or potential areas of concern
3. COC list to include all routine DMMP marine chemicals of concern. Dioxin or TBT analyses are not required unless a Tier 1 evaluation identifies potential sources
4. 10-year recency period
5. Tier 1 evaluation prior to each dredge event to confirm that conditions have not changed such that the previous characterization no longer represents the dredge prism (e.g., due to spills, changes in chemicals of concern or land uses, etc.)

### 2.2 Sampling and Analysis Plans

A SAP must be prepared by the applicant and approved by the DMMP agencies before sediment samples are collected. The sampling and analysis requirements are determined by the volume of surface

and subsurface dredged material and the rank. The minimum number of field samples and dredged material management units (DMMUs) for full characterization are calculated as shown in **Table 6**.

The applicant presents a conceptual dredging plan in the SAP with the dredging area divided into the required number of DMMUs. The number of samples and DMMUs may need to be increased beyond the minimum to address site-specific considerations. Sampling locations are identified, and a compositing plan is presented. Protocols for station positioning, decontamination, field sampling, sample compositing, chemical analysis, biological testing, quality assurance/quality control (QA/QC), and data submittal requirements are also included. Once completed, the DMMO coordinates review and approval of the plan with the DMMP agencies. **Table 7** contains data for sampling plans approved for projects with DY24/25 DMMP decision document outcomes.

## 2.3 Chemical Testing

**Table 8** and **Appendix C** summarize the COCs and projects with DMMP guideline exceedances from DY24/25. There are 59 individual chemicals grouped by chemical type that have DMMP evaluation guidelines and are considered standard COCs for marine projects. For projects in freshwater, there are 34 individual chemicals. **Appendix A** provides a list of these COCs. While tributyltin (TBT) is not considered a standard COC for marine projects, it is often required on a case-by-case basis. Dioxin analysis is also required on a case-by-case basis in both marine and fresh water. **Table 9** summarizes the guidelines used for the evaluation of dioxin in DY24/25.

**Marine Projects.** 13 marine projects were tested in DY24/25; 7 projects had an exceedance. Among these projects, 8 COCs were detected or had non-detect values at concentrations above DMMP screening levels (SL), maximum level (ML), and/or bioaccumulation triggers (BT). BT exceedances occurred for dioxins.

**Freshwater Projects.** No freshwater projects were tested in DY24/25.

**Z-Sample Testing.** Testing of Z-samples for antidegradation evaluations were triggered in 6 projects (Table 12). TOTE Maritime and Day Island Yacht Club had no exceedances in the Z-samples and passed antidegradation standards. Five Z-samples across three projects had a dioxin/furan congener BT exceedance. Pierce County Terminal passed antidegradation standards through bioaccumulation testing and Duwamish Yacht Club passed by best professional judgement of historical site data. Middle Blair Waterway did not pass antidegradation and required a clean sand cover to be placed post-dredge. Dagmars Marina had two chemical non-detected SL exceedances (1,2,4-Trichlorobenzene, Hexachlorobenzene) but passed antidegradation due to the normalized values being below the Sediment Management Standards (SMS) Sediment Cleanup Objective (SCO).

## 2.4 Biological Testing – Bioassays

If a project's chemical testing results indicate the potential for unacceptable adverse environmental or human health effects, the project proponent may opt to further pursue potential suitability for in-water disposal through biological testing. Bioassays are used to evaluate potential toxicity effects on benthic invertebrates. Bioassays are typically only conducted on those DMMUs having one or more exceedance of DMMP screening levels.

**Table 10** summarizes the DMMP projects with DY24/25 decision documents for which bioassay testing (marine or freshwater) was performed. **Appendix B** includes the DMMP bioassay interpretative guidelines used in these evaluations and **Appendix C** includes the results for the two projects for which bioassays were conducted in DY24/25.

Marine toxicity (bioassay) testing was conducted on 5 DMMUs from two dredging projects in DY24/25.

**Day Island Yacht Club.** Bioassays were triggered in 1 of 2 DMMUs. The bioassay passed with no hits (one-hit rule [major hit] or two-hit rule [minor hit]). The same DMMU underwent bioaccumulation testing (See Section 2.5 for details).

**Duwamish Yacht Club.** Bioassays were triggered in 4 of 13 DMMUs. DMMU 12 had a hit under the two-hit rule and DMMU 13 had a hit under the one-hit rule (major hit) in the 10-day amphipod mortality test. All DMMUs had a major hit in the larval bioassay. The 4 DMMUs that underwent bioassay testing were deemed unsuitable for open-water disposal.

## 2.5 Biological Testing – Bioaccumulation

See **Table 11** for project details that underwent bioaccumulation testing.

Bioaccumulation testing may be initiated for projects in which one or more COCs exceed the DMMP's marine BT. No BTs exist for freshwater projects, so bioaccumulation testing is triggered for marine projects, or freshwater projects proposing disposal in the marine environment.

During DY24/25, only one chemical group was reported at concentrations above the marine BT in dredged material samples – dioxin/furan congeners. The following projects had BT exceedances in one or more DMMUs:

- Port of Tacoma – Pierce County Terminal
  - A bioaccumulation evaluation was completed, and the weight-of-evidence review determined all DMMUs to be suitable.
- Day Island Yacht Club –
  - Bioaccumulation testing of the highest dioxin/furan DMMU confirmed suitability for disposal for all project DMMUs.
- Duwamish Yacht Club\*
- Port of Tacoma – Middle Blair Waterway\*
- Port of Tacoma, TOTE Maritime Terminal
  - Bioaccumulation testing on the DMMU composite was initiated but terminated after three weeks due to an error in the preliminary data. The DMMU was suitable for disposal and bioaccumulation testing was not required.

\*The dredging proponents from Duwamish Yacht Club and the Middle Blair Waterway chose not to pursue bioaccumulation testing in the affected DMMU(s), and the material was determined unsuitable for open-water disposal.

## 2.6 Suitability Determinations

A suitability determination summarizes the evaluation procedures used in the characterization of project sediments; evaluates chemical and biological testing data and associated QA/QC data; and documents the interpretation of testing results. The suitability determination is a technical memorandum drafted by the Corps' DMMO then reviewed and signed by representatives from the DMMP agencies. It documents the suitability of proposed dredged sediments for open-water disposal and antidegradation determinations. The suitability determination does not, however, constitute final project approval by the agencies. Comprehensive agency comments on the overall project are provided through the regulatory public notice and review process.

**Table 11** summarizes the 12 projects for which the DMMP completed a suitability determination in DY24/25.

Three projects included material that was found unsuitable for unconfined open-water disposal. Of the 4,029,690 cubic yards (cy) of material evaluated in 12 SDMs issued, 4,000,490 cy were found suitable for unconfined open-water disposal. The total unsuitable volume (29,200 cy) was associated with two projects (Duwamish Yacht Club and Port of Tacoma Middle Blair) that opted out of bioaccumulation testing. Final volumes were not calculated due to additional characterization and/or buffers that need to be applied.

## 2.7 Antidegradation Evaluations

**Table 12** summarizes the DMMP projects with Z-sample or post-construction confirmation analysis for which the DMMP prepared an antidegradation evaluation.

Dredging operations expose new sediment to direct contact with the water column. The exposed sediment must meet the State of Washington's antidegradation policy (WAC-173-204-120) contained in the Sediment Management Standards (Ecology, 2013). All DMMP suitability determinations include a section in which antidegradation is evaluated, but not all projects require special testing to support that evaluation. Projects that received DMMP suitability determinations for open-water disposal but did not require additional testing to address antidegradation are not included in this section of the biennial report. The projects included in this section met one of the following criteria: a) upland disposal was planned, so the project did not require a DMMP suitability determination; the only DMMP action was to conduct an antidegradation evaluation; b) additional testing was conducted to support the antidegradation evaluation, including analysis of surface sediment or Z-samples prior to dredging, or analysis of post-dredge samples.

A 'Z-sample' is a sample collected from the sediment layer just below the dredging overdepth and is typically collected during sampling of heterogeneous sediments. The Z-layer is defined as the two-foot interval beyond the overdepth. The Z-samples are typically archived. Depending on the results from characterization of the overlying dredged material prism, it is sometimes necessary to analyze the Z-samples to determine whether dredging the project will result in degradation of the surface sediment condition.

In some cases, collection of Z-samples is not possible (e.g., refusal during vibracore sampling). In other cases, where DMMUs with elevated concentrations of COCs have been removed, there may be concern that residuals from the dredging operation may leave a contaminated surface. In either case, sampling and testing of the new surface sediment after dredging may be necessary.

## 2.8 Tier 1 Determinations

**Table 13** summarizes the projects that received Tier 1 (no-test) Determinations from the DMMP in DY24/25. In general, these are small volume projects with dredged material that is determined suitable for open-water disposal and/or the sediment exposed by dredging is expected to meet antidegradation guidelines based on available information and site conditions.

All projects begin with a Tier 1 evaluation of existing information on the proposed dredging project, including the site history and all previously collected sediment data. Using the information collected in a Tier 1 evaluation, projects can be exempted from sediment testing under three different scenarios: 1) the small-project guidelines are met; 2) the proposed dredged material meets the Section 404 or Section 103 exclusionary criteria; or 3) upland disposal is planned and there are no issues with the sediment surface to be exposed by dredging.

A low rank small project has a maximum no-test volume of 8,000 cy, whereas a low-moderate to moderate rank small project has a maximum volume of 1,000 cy.

The **exclusionary criteria** are described in the regulations for the Marine Protection, Research, and Sanctuaries Act (MPRSA) (40 CFR 227.13) and Clean Water Act (40 CFR 230.60). Generally, relatively coarser-grained material (e.g., sand and gravel) from high-energy environments that are geographically removed from contaminant sources meet the exclusionary criteria. The DMMP agencies apply the exclusionary criteria on a case-by-case basis.

## 2.9 Recency Extensions

**Table 14** summarizes the two recency extensions that were approved by the DMMP in DY24/25.

Recency guidelines apply to material that has been sampled, tested, and approved for open-water disposal but not yet dredged, and to projects that may be dredged two or more times within the recency period. Key considerations in determining whether the existing data are still representative are the recency of the information and sources of contamination in the vicinity of the project. For High-ranked projects, the recency guidelines allow characterization data to be valid for a period of 3 years. The DMMP guidelines specify a recency period of 5, 6, 7 and 10 years for Moderate, Low-Moderate, Low and Very Low-ranked projects, respectively.

When other permitting requirements, construction delays or funding constraints prevent a project from being dredged during the recency period, extension of the recency period is considered on a case-by-case basis. When considering whether existing data continue to adequately characterize sediment from a project, the agencies review previous characterization data, any new data from the dredge site or vicinity, site use, and sources of contamination. Based on this review, the agencies may extend the recency period – typically for one to two years – for a project that has not yet been dredged or will require additional dredging beyond the expiration of the current recency period. Recency extensions may be allowed with no additional testing, or it may require some level of confirmatory testing.

## 2.10 Project Revisions

**Table 15** summarizes the project revisions approved by the DMMP during DY24/25.

Dredging projects are dynamic by nature and shoaling continues to occur between the time of sediment characterization and the time of dredging. There may also be design changes that alter the dredging volume or footprint. When the project volume or footprint changes subsequent to full characterization, a dredging applicant may request a revision of the volume or footprint found in the suitability determination. The DMMP agencies review such requests on a case-by-case basis.

## 2.11 Special Studies

Table 16 summarizes projects for which special or non-routine studies were conducted.

**Shelter Bay Marina.** Post-dredge sediment sampling and analysis was conducted to evaluate Anti-degradation compliance following the removal of uncharacterized material. Results indicated that the leave surface was in compliance.

**Port of Seattle Terminal 5.** Post-dredge sediment sampling and analysis was conducted to evaluate Anti-degradation compliance following unauthorized overdredging. Placement of sand cover to bring the over dredged areas back to the authorized depth or placement of 12 inches of clean sand, whichever is more, was required.

## 2.12 Supplemental Suitability Determinations

Table 17 lists the Supplemental Suitability Determinations (SSD) prepared in DY24/25. A brief description of each project is provided below:

**Driftwood Key.** A supplemental suitability determination was prepared to document the characterization of an additional DMMU to characterize up to 2,000 cy.

**USACE Snohomish Federal Navigation Channel.** A supplemental suitability determination was prepared to include areas outside of the characterized areas in the dredge footprint.

## 3 Non-standard and/or Complex Projects

---

This chapter includes non-standard or complex projects requiring explanation beyond the summaries provided in Chapters 1 and 2. Projects with special considerations that required best professional judgment (BPJ) for ranking, sampling plan development, sampling, chemical/biological testing, and/or dredging are further described in this chapter.

### 3.1 Project Characterization

No projects required additional discussion.

### 3.2 Unauthorized Dredging and Disposal

#### **Driftwood Key Navigation Channel Maintenance Dredging and Port Gamble Bay Habitat Restoration**

All proposed dredged material from the Driftwood Key project was found suitable for placement at the Port Gardner open water disposal site. Through coordination outside of DMMP, sediments within the entrance channel were selected as candidate material for beneficial reuse at the Port Gamble aquatic restoration site. Sediments from the inner marina area (known as Coon Bay) were explicitly excluded for use at the restoration site. Due to the unavailability of bottom dump barges, material from Coon Bay was also placed as cover material at the Port Gamble aquatic restoration site without proper coordination with the Port Gamble Trustees. While the material was suitable for the open-water disposal site placement, which is located in deep water where shellfish are not harvested, certain chemical parameters (cPAHs) were above the cleanup screening level criteria applicable for the nearshore shellfish restoration material. Corrective actions are in progress with the engaged agencies to remedy the placement of inappropriate material at the restoration site.

#### **Port of Tacoma - Middle Blair Navigation Safety Improvement Project**

During dredging, a release of unsuitable dredged material occurred from a barge at the project dredging site in the Blair Waterway, Tacoma. The spill occurred due to unbalanced loading of the flat-top transfer barge, which caused the containment fence to buckle under the weight of the material. As a result, approximately 800 cubic yards of dredged material flowed over the buckled section and into the water. A portion of the released sediment was removed during subsequent planned dredging in the area, and the remaining material is scheduled for recovery in DY26 as part of the required corrective action. All sediment from this area was intended to be transported to a transloading facility for upland disposal and was not destined for a managed in-water disposal site.

#### **Swinomish Federal Navigation Channel Maintenance Dredging**

A slow release occurred from one scow load carrying an estimated 1,000 CY of dredged material during its 12-hour transit between the dredging location and the Rosario Strait open-water dispersive disposal site on November 16-17, 2024. Data Quality Management load tracking reports showed a decrease in draft aft sensor data from the scow during the scow transit, and the incident was confirmed with forward draft sensor data. Contributing factors to the incident included dealing with severe weather, night-time conditions, and a midnight shift change. No other loads (before or afterwards) were affected, Ecology was notified, and corrective actions were implemented to ensure that the incident was not repeated.

### 3.3 Disposal Activity and Site Use

The DMMP manages multi-user open-water disposal sites located in Puget Sound and coastal Washington (Grays Harbor and Willapa Bay). For projects placing dredged material at these sites, the

Washington State Department of Natural Resources issues site-use authorizations prior to placement. These authorizations are issued for sediments that are:

- Suitable for unconfined open-water disposal as determined by the DMMP evaluation process, and
- Associated with dredging projects that have received all other required regulatory permits (e.g., Clean Water Act 401/404 permits).

Other disposal options for open-water disposal include flow-lane disposal (used primarily in the lower Columbia River and Willapa Bay) and beneficial use. Dredged material not suitable for open-water disposal is typically disposed upland.

During this biennium:

- Puget Sound open water disposal sites - Four of 8 sites were used. Over 450,000 cy of material was placed.
- Grays Harbor - More than 2 million CY was placed, driven primarily by USACE maintenance dredging.
- Willapa Bay - The multi-user dispersive sites were not used.

Flow-lane disposal along the Columbia River is managed by Portland District; cumulative flow-lane volumes in the Columbia River are not tracked by the DMMP agencies.

**Tables 18, 19, 20 and Figures 3 and 4** summarize and graphically illustrate the disposal volumes and placements for DY24/25.

### 3.4 Cumulative DMMP Disposal Site Use and Monitoring Program

The cumulative dredged material volumes disposed at each Puget Sound and Grays Harbor site since program implementation are depicted in **Figure 5** and **Figure 6** respectively and are listed in **Table 21**. Volume summaries for the Puget Sound non-dispersive sites show that site capacities appear to be sufficient to last at least 38 more years (**Table 22**).

The PSDDA Management Plan Reports (MPR 1988, 1989) recognized that intensive post-disposal monitoring surveys would be required early in the program (in the 1990s) to gather data on the adequacy of the evaluation procedures to meet the site management objectives. In accordance with the management plan, the DMMP agencies have periodically reduced the frequency and scope of monitoring based on past documented compliance with the site management objectives and volumes routinely deposited at each site. The current volume triggers for non-dispersive disposal sites are as follows (DMMP, 2021):

- 150,000 cy at Anderson/Ketron and Bellingham Bay (low-use sites), and
- 500,000 cy at Commencement Bay, Elliott Bay, and Port Gardner (more frequently used sites).

The monitoring triggers are considered soft triggers and may be adjusted at the discretion of the DMMP agencies based on BPJ.

The DMMP agencies have conducted a variety of post-disposal physical and environmental monitoring surveys at the non-dispersive sites in Puget Sound and bathymetric surveys at the dispersive sites since the Puget Sound sites were established in 1988/89 (**Table 23**).

Based on Puget Sound site monitoring conducted to date (including physical mapping, on- and off-site sediment chemistry, sediment toxicity, off-site infaunal bioaccumulation, off-site benthic community structure analysis, and laboratory bioaccumulation comparing on and off-site material), dredged material disposal has not caused adverse impacts at or adjacent to any of the non-dispersive sites.

The overall goals of the DMMP site monitoring program are to ensure that the DMMP-prescribed disposal site conditions are maintained and to verify that DMMP dredged material evaluation

procedures adequately protect the aquatic environment. Monitoring surveys provide feedback to verify the adequacy of the DMMP dredged material evaluation procedures and management plan. The Sediment Management Annual Review Meeting (SARM) provide a forum to report on these post-disposal survey findings conducted during any given dredging year, and to make management plan adjustments if needed.

Starting in 2017, the DMMP embarked on a focused evaluation of DMMP disposal site monitoring and management, particularly with respect to bioaccumulatives, but also with respect to other issues and inefficiencies identified in the original framework over time. The DMMP reviewed PSDDA framework documents, consulted Washington State SMS experts, and held public workshops to incorporate revisions to the original monitoring framework to:

- Incorporate lessons learned and information gained over 30 years of monitoring of the disposal sites,
- Update the monitoring program based on new technologies and approaches, and
- Comply with federal and state regulations, particularly the 2013 update of Part V of the SMS.

The final Disposal Site Monitoring Plan was presented at the 2024 SARM and was adopted as the new framework for the DMMP disposal site monitoring program in January 2025 (DMMP, 2025a).

### 3.5 Monitoring Status at Non-dispersive Sites

**Table 24** shows the monitoring status of the non-dispersive sites in Puget Sound at the end of DY2025, including the cumulative volume since the most recent monitoring event at each site, the soft monitoring triggers, and projected monitoring for DY24/25. A routine monitoring event at the Port Gardner site is underway. Routine monitoring events at the Anderson/Ketron site may occur in the next biennium pending completion of dredging projects.

### 3.6 DY24/25 Post-Disposal Site Monitoring

One disposal site monitoring event was conducted during the DY24/25 biennium (Elliott Bay). Results are summarized below.

#### 2023 Elliott Bay Monitoring Study

Physical, chemical, and biological testing at the Elliott Bay disposal site was conducted in 2023 in accordance with the DSMP (DMMP, 2025a). Full details of the monitoring study findings are available in the study reports (NGS, 2023; NewFields, 2024).

The results for the monitoring met the goals of Part 1 of the monitoring framework and further investigation under Part 2 was not required. The findings are summarized below:

**Question 1. Does the deposited dredged material stay onsite?**

**Goal A. Dredged material remains within the disposal site boundary - Met**

Mapped accumulation of recent dredged material was determined using SPI and included trace, 3 cm, and 10 cm contour layers (Figure 6). Dredged material accumulation  $\geq 3$  cm was not observed at or beyond the perimeter line. Dredged material accumulation  $\geq 10$  cm was not observed at or beyond the disposal site boundary.

**Question 2. Does deposited dredge material cause unacceptable adverse impacts to biological conditions on site?**

**Goal B. No long-term adverse effects to on-site benthic biological resources and habitat as defined by Site Condition II (SCII) - Met.**

Goal B was evaluated through a qualitative assessment of SPI and PV imaging parameters including apparent redox potential discontinuity (RPD) depths, infaunal successional stages, and presence of benthic organisms; analysis of sediment chemistry collected from five locations within the Disposal Site Decision Unit (DU); and confirmatory bioassay testing.

- The SPI and PV imaging suggested that the benthic community within the disposal site was following expected levels of recovery following dredged material disposal. Long-term adverse effects to on-site benthic biological resources and habitat were not apparent.
- Surface sediment (0-10 cm) samples were collected from five randomly selected stations within the Disposal Site DU and analyzed for the benthic DMMP COC list. All COCs were below the DMMP SLs except for mercury at two stations and total PCB Aroclors at another station. However, these stations were outside the footprint of recently placed dredged material within the disposal site. Additionally, there is known mercury and PCB concentration exceedances in the vicinity of the stations. Based on these facts, it was determined that the SL exceedances were unrelated to placement of dredged material.
- Sediment bioassays were initiated within the 8-week holding time for samples from the three stations with mercury or PCB Aroclor exceedances. All samples passed the DMMP bioassay interpretive criteria and were not considered to exhibit toxic effects to benthic receptors.

***Goal C. No long-term adverse bioaccumulative risk to on-site resources as defined by Site Condition II (SCII) and Sediment Management Standards (SMS) – Met.***

Goal C was addressed through the collection and analysis of surface sediment (0-10 cm) composites from the Disposal Site Decision Unit (DU) and from an off-site DU called the Environs DU. The composites consisted of 20 subsamples collected from a stratified random grid within each DU.

SCII and SMS were evaluated by analyzing the sediment composites for DMMP bioaccumulative chemicals of concern and/or conducting bioaccumulation testing of the sediment composite samples and analyzing the exposed tissues for the bioaccumulative chemicals of concern.

All disposal site DU sediment concentrations were below DMMP Bioaccumulation Triggers; all disposal site DU tissue concentrations (from bioaccumulation testing) were also below DMMP target tissue levels or not statistically different when compared to the compliance target tissue levels.

***Question 3. Does use of the disposal site cause unacceptable adverse impacts to biological conditions off site?***

***Goal D. No significant decrease in off-site benthic habitat quality due to dredged material disposal - Met***

Goal D was evaluated for direct and indirect impacts/effects. Because dredged material was not found off site, no direct effects were evaluated. Indirect effects were evaluated through a qualitative assessment of SPI and PV parameters including ambient sediment characteristics, apparent RPD depths, infaunal successional stages, and biological observations. The SPI and PV imaging indicated that there were no significant decreases in off-site biological conditions caused indirectly by dredged material disposal at the Elliott Bay site.

### **2025 Port Gardner Monitoring Study**

Routine monitoring was initiated for the Port Gardner non-dispersive site in DY26. A Sediment Profile Imaging (SPI)/Plan View (PV) study was conducted in June 2025, after the February 15<sup>th</sup> dredging work window closed. Full details of the SPI/PV study findings are available in the study report (NGS, 2025). Based upon the SPI results that indicated that all material remained on-site, the bioaccumulative portion of the monitoring program was not triggered. Chemical and biological testing is in progress, with results

anticipated in late 2025. Preliminary chemistry data resulted in bioassays not being triggered. Full results will be summarized in the DY26/27 Biennial Report.

### 3.7 Endangered Species Act (ESA) Consultation

USACE, in coordination with the DMMP agencies, consults with the National Marine Fisheries Service (NMFS) and U.S. Fish and Wildlife Service (USFWS) under Section 7 of the Endangered Species Act (ESA) and with NMFS under Section 305(b) of the Magnuson-Stevens Fishery Conservation and Management Act as necessary. Transport to and disposal of material at DMMP multi-user sites are covered under this programmatic consultation so that use of the sites does not need to be consulted individually for each project.

A 2015 Biological Opinion (BiOp) issued by NMFS provides programmatic coverage through 2046. As part of the terms and conditions of the 2015 BiOp, the USACE (and by extension, the DMMP) must comply with biennial reporting requirements, including the submission of this biennial report and reporting of upland volumes. A more detailed summary was provided in section 5.4 of the DY14/15 biennial report.

The most recent consultation, initiated in December 2021 and concluded in February 2022, addressed the revised critical habitat designation for the Southern Resident Killer Whale (SRKW) which is adjacent to the Point Chehalis open-water disposal site at the mouth of Grays Harbor. NMFS concurred that the conditions of the biological opinion are met, and the original opinion remains in effect.

Per the BiOp, the next 5-year assessment of programmatic coverage (2026-2030) is due in 2025, with this DY24/DY25 Biennial Report. Reinitiation of consultation is required and shall be requested by USACE or by NMFS, where discretionary Federal involvement or control over the action has been retained or is authorized by law and (1) the proposed action causes take; (2) new information reveals effects of the action that may affect listed species or critical habitat in a manner or to an extent not previously considered; (3) the identified action is subsequently modified in a manner that causes an effect to the listed species or critical habitat that was not considered in the written concurrence; or (4) a new species is listed or critical habitat designated that may be affected by the identified action (50 CFR 402.16).

## 4 References

---

DMMP, 2021. *Updates to DMMP Disposal Site Monitoring Triggers in Puget Sound*. Prepared by Shannon Soto (WDNR) for the DMMP agencies. June 23, 2021.

DMMP, 2022. Revised Monitoring Framework for Puget Sound DMMP Non-Dispersive Disposal Sites. Prepared by Inouye, Fourie, and Dunay for the DMMP. June 10, 2022.

DMMP, 2025a. Disposal Site Monitoring Plan. Unconfined, Open-Water, Non-Dispersive Dredged Material Disposal Sites in Puget Sound. Prepared by the DMMP Agencies. January 13, 2025.

DMMP, 2025b. *Dredged Material Evaluation and Disposal Procedures, User Manual*. Prepared by the Seattle District Dredged Material Management Office for the DMMP agencies. November 2025.

Ecology, 2013. *Sediment Management Standards – Chapter 173-204 WAC*. Washington State Department of Ecology, February 2013.

Ecology, 2021. *Sediment Cleanup User’s Manual (SCUM)*, Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC, Washington State Department of Ecology, Third Revision December 2021.

MPR, 1988. *Management Plan Report – Unconfined Open-Water Disposal of Dredged Material, Phase I (Central Puget Sound)*. Prepared by the Puget Sound Dredged Disposal Analysis Agencies. June 1988.

MPR, 1989. *Management Plan Report – Unconfined Open-Water Disposal of Dredged Material, Phase II (North and South Puget Sound)*. Prepared by the Puget Sound Dredged Disposal Analysis Agencies. September 1989.

NewFields, 2024. *2023 DMMP Monitoring of the Elliott Bay Non-Dispersive Unconfined Open-Water Dredged Material Disposal Site*. Final Data Report. Submitted to Washington DNR, Olympia, Washington. Prepared by NewFields, Edmonds, Washington. July 11, 2024.

NGS, 2023. *Sediment Profile Imaging and Plan View Survey – Elliott Bay Disposal Site, Seattle, Washington*. Final Data Report. Prepared for the U. S. Army Corps of Engineers, Seattle District. Prepared by NuGlobal Solutions, Edmonds, Washington. June 21, 2023.

NGS, 2025. *Sediment Profile Imaging and Plan View Survey – Port Gardner Disposal Site, Everett, Washington*. Final Data Report. Prepared for the U. S. Army Corps of Engineers, Seattle District. Prepared by NuGlobal Solutions, Edmonds, Washington. June 21, 2023.

Full text versions of all decision documents listed in Tables 1 and 2 and referenced elsewhere throughout this report are publicly available on the DMMO’s website:

<https://www.nws.usace.army.mil/Missions/Civil-Works/Dredging/>

## Tables

---

---

**Table 1. DMMP Evaluation Activities Completed in DY24.**

| No. | PROJECT                                                                  | DMMP Action | Disposal Area/Type | Project Volume (cy) |
|-----|--------------------------------------------------------------------------|-------------|--------------------|---------------------|
| 1   | Anchor Cove Marina, Anacortes                                            | SD          | PS                 | 26,900              |
| 2   | Cape George Marina, Discovery Bay, Jefferson County                      | T1          | BU                 | 1,000               |
| 3   | Driftwood Key Navigation Channel                                         | SSD         | PS                 | 2,000               |
| 4   | East Fork Lewis River Ridgefield Pits Restoration, Clark County          | VR          | BU                 | 390,670             |
| 5   | Little Hangman Creek Restoration near Latah, Washington                  | T1AD        | BU                 | 4,775               |
| 6   | Lower Columbia Fish Enhancement Group, Baird Creek Splash Dam Liberation | T1AD        | BU                 | 37,000              |
| 7   | Lower Satsop Reach Restoration                                           | T1          | BU/UP              | 58,299              |
| 8   | Northwest Grain Growers Inc.                                             | T1          | UP                 | 6,250               |
| 9   | Pacific Shellfish, South Bend Maintenance Dredging                       | T1AD        | UP                 | 8,000               |
| 10  | Palasz Dock Extension                                                    | T1          | PS                 | 294                 |
| 11  | Port of Seattle, Terminal 5 Overdredging                                 | AD          | --                 | --                  |
| 12  | Port of Tacoma, Pierce County Terminal, Blair Waterway                   | SD          | PS                 | 27,462              |
| 13  | Sandy Hook Yacht Club Estates, Whidbey Island                            | SD          | PS                 | 32,600              |
| 14  | Shelter Bay Marina Permit Non-compliance Evaluation, Swinomish Channel   | AD          | --                 | --                  |
| 15  | Swinomish Indian Tribal Community, Commercial Fish Dock                  | SD          | PS                 | 7,800               |
| 16  | USACE Duwamish Navigation Channel - Sections A & B and Turning Basin     | SD/RRD      | PS                 | 140,000             |
| 17  | USACE Grays Harbor Navigation Channel                                    | SD          | GH/BU              | 3,200,000           |
| 18  | USACE NWW Snake River Dams Stilling Basins                               | T1          | OI                 | 36,150              |
| 19  | USACE Quillayute Navigation Channel and Boat Basin                       | SD          | BU                 | 85,990              |
| 20  | USACE Snohomish Federal Navigation Channel                               | SSD         | PS/BU              | --                  |
| 21  | USACE Swinomish Federal Navigation Channel                               | RRD         | PS                 | --                  |
| 22  | USACE Swinomish Federal Navigation Channel                               | RE          | --                 | --                  |
| 23  | USACE Swinomish Federal Navigation Channel                               | SD          | PS                 | 400,000             |

**DMMP Actions**

AD = Anti-degradation Determination

DR = Design Revision

RRD = Re-ranking Determination

RE = Recency Extension

SD = Suitability Determination

SS = Special Study

T1 = Tier 1 Evaluation

VR = Volume Revision

SSD = Supplemental Suitability Determination

**Disposal Area/Type**

BU = Beneficial Use

CR = Columbia River

GH = Grays Harbor

PS = Puget Sound

UP = Upland

WB = Willapa Bay

OI = Other In-Water Disposal Site

FL = Flow Lane

-- = Not applicable

**Table 2. DMMP Evaluation Activities Completed in DY25**

| No. | PROJECT                                                  | DMMP Action | Disposal Area/Type | Project Volume (cy) |
|-----|----------------------------------------------------------|-------------|--------------------|---------------------|
| 1   | Dagmars Marina                                           | AD          | UP                 | 3,046               |
| 2   | Day Island Yacht Club                                    | SD          | PS                 | 24,438              |
| 3   | Discovery Bay - Pedersen Shoreline Restoration           | T1AD        | BU/UP              | 1,666               |
| 4   | Duwamish Yacht Club, Duwamish River                      | SD          | PS                 | 45,750              |
| 5   | East Fork Tulalip Creek Hatchery Intake Sediment Removal | T1AD        | UP                 | 3,730               |
| 6   | Lower Cherry Creek Restoration Project Phase II-III      | T1          | BU/UP              | 21,518              |
| 7   | Mason's Resort Marina                                    | T1AD        | UP                 | 7,000               |
| 8   | Newhalem Creek Hydroelectric Decommissioning             | T1          | BU/UP              | 500                 |
| 9   | Point Roberts Marina                                     | T1          | BU                 | 10,000              |
| 10  | Port of Tacoma, Middle Blair Waterway                    | SD          | PS                 | 11,750              |
| 11  | Port of Tacoma, TOTE Maritime, Blair Waterway            | SD          | PS                 | 15,000              |
| 12  | West Fork Hoquiam River Dam Removal                      | T1AD        | UP                 | 4,600               |
| 13  | Zittel's Marina                                          | RE          | PS                 | 17,060              |

**DMMP Actions**

AD = Anti-degradation Determination  
DR = Design Revision  
RRD = Re-ranking Determination  
RE = Recency Extension  
SD = Suitability Determination  
SS = Special Study  
T1 = Tier 1 Evaluation  
VR = Volume Revision  
SSD = Supplemental Suitability Determination  
SP = Small-Project No-Test Determination

**Disposal Area/Type**

BU = Beneficial Use  
CR = Columbia River  
GH = Grays Harbor  
PS = Puget Sound  
UP = Upland  
WB = Willapa Bay  
SR = Snake River (in water)  
OI = Other In-Water Disposal Site  
FL = Flow Lane  
-- = Not applicable

**Table 3. DMMP Evaluation Activities Initiated in DY24/25 but ongoing into DY26**

| PROJECT                                              | Project Volume (cy) | SAP Review DY | Status at the end of DY25                                       |
|------------------------------------------------------|---------------------|---------------|-----------------------------------------------------------------|
| Seattle Harbor Deepening - West Waterway             | 545,000             | 2025          | Waiting on data report                                          |
| Tacoma Harbor Deepening - Blair Waterway             | 2,390,258           | 2025          | Waiting on data report and supplemental bioaccumulation testing |
| Port of Seattle - West Waterway High Spots           | 16,661              | 2025          | Waiting on data report                                          |
| Port of Seattle Terminal 18                          | 2,955               | 2025          | Waiting on data report                                          |
| Port of Seattle Terminal 30                          | 5,561               | 2025          | Waiting on data report                                          |
| Lagoon Point Marina                                  | 16,956              | 2025          | Reviewing draft data report/prep SDM                            |
| Clayton Beach Restoration                            | 14,600              | 2025          | SAP review in progress                                          |
| Boyer Towing                                         | 3,500               | 2025          | SAP Addendum review in progress                                 |
| U.S. Navy Bremerton NAVFAC M2D2                      | 430,224             | 2025          | SAP review in progress                                          |
| Enloe Dam Removal                                    | 588,000             | 2025          | Reviewing draft data report                                     |
| Meydenbauer Bay Yacht Club                           | 18,500              | 2023          | Reviewing draft data report/prep SDM                            |
| Port of Tacoma Husky and Washington United Terminals | 314,851             | 2025          | Reviewing draft data report/prep SDM                            |
| Oak Harbor                                           | 180,760             | 2025          | Reviewing draft data report/prep SDM                            |
| Sandy Hook Yacht Club Estates                        | 32,600              | 2024          | Waiting on AIS evaluation                                       |
| Tulalip Marina                                       | 286,370             | 2025          | Waiting on data report                                          |
| Squalicum Marina                                     | 94,810              | 2025          | SAP Addendum review in progress                                 |

**Notes:**

AIS = Aquatic Invasive Species

SAP = Sampling and Analysis Plan

SDM = Suitability Determination Memorandum

**Table 4. DMMP Process Times**

| Task No. | Task Description                                     | Starting point               | Endpoint                     | Roles & Responsibilities          | Time Required (days) |            |            |
|----------|------------------------------------------------------|------------------------------|------------------------------|-----------------------------------|----------------------|------------|------------|
|          |                                                      |                              |                              |                                   | Median               | Min        | Max        |
| 1        | SAP Development                                      | Variable                     | Draft SAP Submission         | Project applicant                 | NA                   | NA         | NA         |
| 2        | SAP Review & Revision                                | Draft SAP Submission         | SAP Approval                 | Project applicant and DMMP        | 36                   | 14         | 219        |
| 3        | Sampling & Testing and Data Compilation              | SAP Approval                 | Draft data report submission | Project applicant                 | 182                  | 92         | 580        |
| 4        | Data Report Review & Revisions and Completion of SDM | Draft data report submission | SDM signed                   | Project applicant and DMMP        | 86                   | 22         | 276        |
| 2, 3, 4  | <b>Total DMMP Process Time</b>                       | <b>Draft SAP Submission</b>  | <b>SDM signed</b>            | <b>Project applicant and DMMP</b> | <b>429</b>           | <b>180</b> | <b>702</b> |

Table 5. DY 24/25 Project Rank Changes

| PROJECT                                       | DY   | Location       | Waterbody         | Initial Rank | Final Rank       |
|-----------------------------------------------|------|----------------|-------------------|--------------|------------------|
| Anchor Cove Marina                            | 2024 | Anacortes, WA  | Guemes Channel    | M            | LM               |
| Sandy Hook Marina                             | 2024 | Whidbey Island | Cultus Bay        | M            | LM               |
| USACE Swinomish Federal Navigation Channel    | 2024 | La Conner, WA  | Swinomish Channel | L            | Project specific |
| USACE Duwamish Navigation Channel - Section B | 2024 | Tukwila, WA    | Duwamish River    | M - 5 years  | M - 6 years      |

**Ranking:**

NT = No Test

VL = Very Low

L = Low

LM = Low-moderate

M = Moderate

H = High

**Table 6. DMMP Sampling Requirements**

Puget Sound, Grays Harbor, Willapa Bay and the Upper Columbia River

| Project Rank | Maximum Volume Represented by a Field Sample (cy) | Heterogeneous Sediment (contamination level decreases with depth*) |                                    | Homogeneous Sediment DMMUs (cy) |
|--------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------|---------------------------------|
|              |                                                   | Surface <sup>1</sup> DMMUs (cy)                                    | Subsurface <sup>2</sup> DMMUs (cy) |                                 |
| Very Low     | Project specific                                  | Not applicable                                                     | Not applicable                     | 100,000                         |
| Low          | 8,000                                             | 48,000                                                             | 72,000                             | 60,000                          |
| Low-Moderate | 8,000                                             | 32,000                                                             | 48,000                             | 40,000                          |
| Moderate     | 4,000                                             | 16,000                                                             | 24,000                             | 20,000                          |
| High         | 4,000                                             | 4,000                                                              | 12,000                             | 8,000                           |

Lower Columbia River

| Project Rank | DMMUs      |
|--------------|------------|
| Very Low     | 300,000 cy |
| Low          | 100,000 cy |
| Low-moderate | 70,000 cy  |
| Moderate     | 40,000 cy  |
| High         | 5,000 cy   |

**Notes**<sup>1</sup>Surface is defined as the top 4 feet of the dredge prism.<sup>2</sup>Subsurface is defined as that portion of the dredge prism beneath the 4-ft surface layer.

If contamination increases with depth or there is no suspected difference between surface and subsurface contamination, project specifics will dictate the appropriate volume limits for the surface and subsurface DMMUs.

Table 7. DY24/25 Projects - Approved Sampling Plans

| Project                                                              | Dredge Year of Decision Document <sup>1</sup> | Rank           | Total Volume (cy) | Surface Volume (cy) | Number of Surface Samples | Number of Surface DMMUS | Subsurface Volume (cy) | Number of Sub-surface Samples | Number of Sub-surface DMMUS |
|----------------------------------------------------------------------|-----------------------------------------------|----------------|-------------------|---------------------|---------------------------|-------------------------|------------------------|-------------------------------|-----------------------------|
| USACE Duwamish Navigation Channel - Sections A & B and Turning Basin | 2024                                          | Various        | 140,000           | 140,000             | 28                        | 8                       | 0                      | 0                             | 0                           |
| Swinomish Indian Tribal Community, Commercial Fish Dock              | 2024                                          | M              | 7,800             | 7,800               | 3                         | 1                       | 0                      | 0                             | 0                           |
| USACE Grays Harbor Navigation Channel                                | 2024                                          | Various        | 3,200,000         | 3,200,000           | 162                       | 39                      | NA <sup>2</sup>        | 4                             | 1                           |
| USACE Quillayute Navigation Channel and Boat Basin                   | 2024                                          | VL - M         | 97,990            | 85,990              | 18                        | 6                       | 12,000                 | 3                             | 1                           |
| Port of Seattle, Terminal 5 Overdredging                             | 2024                                          | H              | ---               |                     | 17                        |                         |                        |                               |                             |
| USACE Swinomish Federal Navigation Channel                           | 2024                                          | L <sup>3</sup> | 400,000           | 400,000             | 24                        | 4                       | 0                      | 0                             | 0                           |
| Anchor Cove Marina, Anacortes                                        | 2024                                          | M              | 26,900            | 26,900              | 7                         | 2                       | 0                      | 0                             | 0                           |
| Port of Tacoma, Pierce County Terminal, Blair Waterway               | 2024                                          | M              | 27,462            | 27,462              | 6                         | 2                       | 0                      | 0                             | 0                           |
| Sandy Hook Yacht Club Estates, Whidbey Island                        | 2024                                          | M              | 32,600            | 32,600              | 6                         | 3                       | 0                      | 0                             | 0                           |
| Port of Tacoma, TOTE Maritime, Blair Waterway                        | 2025                                          | M              | 15,000            | 13,700              | 4                         | 1                       | 1,300                  | 2                             | 1                           |
| Duwamish Yacht Club, Duwamish River                                  | 2025                                          | H              | 45,750            | 29,750              | 47                        | 8                       | 16,000                 | 29                            | 5                           |
| Day Island Yacht Club                                                | 2025                                          | M              | 24,438            | 24,438              | 7                         | 2                       | 0                      | 0                             | 0                           |
| Port of Tacoma, Middle Blair Waterway                                | 2025                                          | H              | 11,750            | 11,750              | 3                         | 3                       | 0                      | 0                             | 0                           |

**Notes:**

<sup>1</sup> Approved project SAPs are listed in the DY in which their respective DMMP decision document was finalized.

<sup>2</sup> Subsurface units were exploratory only

<sup>3</sup> Homogenous; surface grabs only

Table 8. DY24/25 DMMU Chemical Testing Summary of Exceedances

| CHEMICAL OF CONCERN             | Marine            |                      |                   |                      |                   |                      | Freshwater         |                       |                    |                       |
|---------------------------------|-------------------|----------------------|-------------------|----------------------|-------------------|----------------------|--------------------|-----------------------|--------------------|-----------------------|
|                                 | # of DMMUs D > SL | # of Projects D > SL | # of DMMUs D > BT | # of Projects D > BT | # of DMMUs D > ML | # of Projects D > ML | # of DMMUs D > SL1 | # of Projects D > SL1 | # of DMMUs D > SL2 | # of Projects D > SL2 |
| <b>METALS</b>                   |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| Antimony                        | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Arsenic                         | 0                 | 0                    | 0                 | 0                    | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Cadmium                         | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Chromium                        | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Copper                          | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Lead                            | 0                 | 0                    | 0                 | 0                    | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Mercury                         | 0                 | 0                    | 0                 | 0                    | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Nickel                          |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| Selenium                        | ---               | ---                  | 0                 | 0                    | ---               | ---                  | 0                  | 0                     | 0                  | 0                     |
| Silver                          | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Zinc                            | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| <b>ORGANOMETALLIC COMPOUNDS</b> |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| Tributyltin (bulk)              | ---               | ---                  | 0                 | 0                    | ---               | ---                  | 0                  | 0                     | 0                  | 0                     |
| Monobutyltin                    |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| Dibutyltin                      |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| Tetrabutyltin                   |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| <b>PAHs</b>                     |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| Naphthalene                     | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Acenaphthylene                  | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Acenaphthene                    | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Fluorene                        | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Phenanthrene                    | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Anthracene                      | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| 1-Methylnaphthalene             |                   |                      |                   |                      |                   |                      | ---                | ---                   | ---                | ---                   |
| 2-Methylnaphthalene             | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Total LPAH                      | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Fluoranthene                    | 0                 | 0                    | 0                 | 0                    | 0                 | 0                    |                    |                       |                    |                       |
| Pyrene                          | 0                 | 0                    | 0                 | 0                    | 0                 | 0                    |                    |                       |                    |                       |
| Benz(a)anthracene               | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Chrysene                        | 1                 | 1                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Benzofluoranthenes (b,j,k)      | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Benzo(a)pyrene                  | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Indeno(1,2,3-c,d)pyrene         | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Dibeno(a,h)anthracene           | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Benzo(g,h,i)perylene            | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Total HPAH                      | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Total PAH                       |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| <b>CHLORINATED HYDROCARBONS</b> |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| 1,4-Dichlorobenzene             | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| 1,2-Dichlorobenzene             | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| 1,2,4-Trichlorobenzene          | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Hexachlorobenzene (HCB)         | 0                 | 0                    | 0                 | 0                    | 0                 | 0                    |                    |                       |                    |                       |
| beta-Hexachlorocyclohexane      |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| <b>PHTHALATES</b>               |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| Dimethyl phthalate              | 3                 | 1                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Diethyl phthalate               | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Di-n-butyl phthalate            | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Butyl benzyl phthalate          | 1                 | 1                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Bis(2-ethylhexyl) phthalate     | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |

Table 8. DY24/25 DMMU Chemical Testing Summary of Exceedances

| CHEMICAL OF CONCERN                | Marine            |                      |                   |                      |                   |                      | Freshwater         |                       |                    |                       |
|------------------------------------|-------------------|----------------------|-------------------|----------------------|-------------------|----------------------|--------------------|-----------------------|--------------------|-----------------------|
|                                    | # of DMMUs D > SL | # of Projects D > SL | # of DMMUs D > BT | # of Projects D > BT | # of DMMUs D > ML | # of Projects D > ML | # of DMMUs D > SL1 | # of Projects D > SL1 | # of DMMUs D > SL2 | # of Projects D > SL2 |
| Di-n-octyl phthalate               | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| <b>PHENOLS</b>                     |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| Phenol                             | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| 2-Methylphenol                     | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| 4-Methylphenol                     | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| 2,4-Dimethylphenol                 | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Pentachlorophenol                  | 0                 | 0                    | 0                 | 0                    | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| <b>MISCELLANEOUS EXTRACTABLES</b>  |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| Benzy1 alcohol                     | 2                 | 1                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Benzoic acid                       | 1                 | 1                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Dibenzofuran                       | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| Hexachlorobutadiene                | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| N-Nitrosodiphenylamine             | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Carbazole                          |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| <b>PESTICIDES &amp; PCBs</b>       |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| 4,4'-DDD                           | 0                 | 0                    | ---               | ---                  | ---               | ---                  |                    |                       |                    |                       |
| 4,4'-DDE                           | 0                 | 0                    | ---               | ---                  | ---               | ---                  |                    |                       |                    |                       |
| 4,4'-DDT                           | 0                 | 0                    | ---               | ---                  | ---               | ---                  |                    |                       |                    |                       |
| Sum of 4,4-DDX compounds           | ---               | ---                  | 0                 | 0                    | 0                 | 0                    |                    |                       |                    |                       |
| 2,4'-DDD and 4,4'-DDD              |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| 2,4'-DDE and 4,4'-DDE              |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| 2,4'-DDT and 4,4'-DDT              |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| Aldrin                             | 0                 | 0                    | ---               | ---                  | ---               | ---                  |                    |                       |                    |                       |
| <b>Total chlordane</b>             | 7                 | 2                    | 0                 | 0                    | ---               | ---                  |                    |                       |                    |                       |
| Dieldrin                           | 0                 | 0                    | ---               | ---                  | 0                 | 0                    | ---                | ---                   | ---                | ---                   |
| Heptachlor                         | 0                 | 0                    | ---               | ---                  | 0                 | 0                    |                    |                       |                    |                       |
| Endrin ketone                      |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| Total PCBs                         | 0                 | 0                    | 0                 | 0                    | 0                 | 0                    | 0                  | 0                     | 0                  | 0                     |
| <b>BULK PETROLEUM HYDROCARBONS</b> |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| TPH-Diesel                         |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| TPH-Residual                       |                   |                      |                   |                      |                   |                      | 0                  | 0                     | 0                  | 0                     |
| <b>DIOXINS/FURANS</b>              |                   |                      |                   |                      |                   |                      |                    |                       |                    |                       |
| <b>Total TEQ</b>                   | ---               | ---                  | 17                | 5                    | ---               | ---                  | 0                  | 0                     | 0                  | 0                     |

Notes:

D = Detected, SL = Screening Level, BT = Bioaccumulation Trigger, ML = Maximum Level, --- = No guideline

Analytes in **bold** indicate chemical had exceedance in one or more samples.

There are no Z-sample exceedances

=not a COC for water type

**Table 9. Dioxin Guidelines Utilized to Evaluate DY24/25 Projects**

| <b>(a) Puget Sound Interim Guidelines for Nondispersive Sites<sup>1</sup></b>                      |                                        |                     |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|--|--|
| <b>Disposal Sites</b>                                                                              | <b>Project Volume-Weighted Average</b> | <b>DMMU Maximum</b> |  |  |
| Anderson-Ketron, Commencement Bay, Elliott Bay, Port Gardner, Bellingham Bay                       | 4 ppqr TEQ                             | 10 ppqr TEQ         |  |  |
| <b>(b) Puget Sound Interim Guidelines for Dispersive Sites</b>                                     |                                        |                     |  |  |
| <b>Disposal Sites</b>                                                                              | <b>DMMU Maximum</b>                    |                     |  |  |
| Port Angeles, Port Townsend, Rosario Strait                                                        | 4 ppqr TEQ                             |                     |  |  |
| <b>(c) Grays Harbor Guidelines (Derived from 1991 Risk Assessment)</b>                             |                                        |                     |  |  |
| DMMU Maximum: 2,3,7,8-TCDD = 5 ppqr; and TEQ = 15 ppqr                                             |                                        |                     |  |  |
| <b>(d) Columbia River Basin</b>                                                                    |                                        |                     |  |  |
| Comparison to Columbia River background stations downstream of Puget Island: 0.65 to 2.89 ppqr TEQ |                                        |                     |  |  |
| <b>(e) Upland Beneficial Use</b>                                                                   |                                        |                     |  |  |
| Model Toxics Control Act method B unrestricted land use level: 11 ppqr TEQ                         |                                        |                     |  |  |

**Notes:**

<sup>1</sup>Case-by-case determinations may be made for exceedances of these guidelines based on material placement sequencing, presence or absence of other bioaccumulatives, and frequency of disposal-site use.

Table 10. DY24/25 Bioassay (Toxicity) Testing Summary

| PROJECT                                | Marine/<br>Freshwater | # of DMMUs<br>tested | Interpretive<br>Guidelines | Control<br>Sediment<br>source | Reference<br>sediment<br>source | DMMUs with Major or Minor Hits? * |   |                       |   |                               |   |                                        |                                          | # of tests<br>with<br>QA/QC<br>rejections | # of<br>DMMUs<br>passed<br>bioassays | # of<br>DMMUs<br>failed<br>bioassays |   |   |  |
|----------------------------------------|-----------------------|----------------------|----------------------------|-------------------------------|---------------------------------|-----------------------------------|---|-----------------------|---|-------------------------------|---|----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|---|---|--|
|                                        |                       |                      |                            |                               |                                 | Marine                            |   |                       |   |                               |   |                                        |                                          |                                           |                                      |                                      |   |   |  |
|                                        |                       |                      |                            |                               |                                 | 10-day Amphipod<br>mortality      |   | 48-hr Sediment Larval |   | 20-day <i>Neanthes</i> Growth |   | 10-day<br><i>Hyalella</i><br>mortality | 20-day<br><i>Chironomus</i><br>mortality | 20-day<br><i>Chironomus</i><br>growth     |                                      |                                      |   |   |  |
| Minor Hit                              |                       | Major Hit            |                            | Minor Hit                     |                                 | Major Hit                         |   | Minor Hit             |   | Major Hit                     |   |                                        |                                          |                                           |                                      |                                      |   |   |  |
| Day Island Yacht Club                  | Marine                | 1                    | DMMP                       | Yaquina Bay,<br>OR            | Carr Inlet                      | 0                                 | 0 | 0                     | 0 | 0                             | 0 |                                        |                                          |                                           |                                      | 0                                    | 1 | 0 |  |
| Duwamish Yacht Club,<br>Duwamish River | Marine                | 4                    | DMMP                       | Yaquina Bay,<br>OR            | Carr Inlet                      | 1                                 | 1 | 0                     | 4 | 0                             | 0 |                                        |                                          |                                           |                                      | 0                                    | 0 | 4 |  |

Notes:

\* Major hit = 1-hit; Minor hit = 2-hit

Not applicable

**Table 11. DY24/25 Suitability Determinations**

| PROJECT                                                              | Dredging Year (DY) | Rank    | Total Volume (cy) | DMMUs, Chemical Analyses | DMMUs, Bioassay Analyses | DMMUs, Bioaccumulation Analyses | DMMUs Failing | Volume Failing (cy) | DMMUs Passing | Volume Passing (cy) | Proposed Disposal Site/Type |
|----------------------------------------------------------------------|--------------------|---------|-------------------|--------------------------|--------------------------|---------------------------------|---------------|---------------------|---------------|---------------------|-----------------------------|
| Anchor Cove Marina, Anacortes                                        | 2024               | M       | 26,900            | 2                        | 0                        | 0                               | 0             | 0                   | 2             | 26,900              | RS                          |
| Port of Tacoma, Pierce County Terminal, Blair Waterway               | 2024               | M       | 27,462            | 2                        | 0                        | 2                               | 0             | 0                   | 2             | 27,462              | CB                          |
| Sandy Hook Yacht Club Estates, Whidbey Island                        | 2024               | M       | 32,600            | 3                        | 0                        | 0                               | 0             | 0                   | 3             | 32,600              | PG/PT                       |
| Swinomish Indian Tribal Community, Commercial Fish Dock              | 2024               | M       | 7,800             | 1                        | 0                        | 0                               | 0             | 0                   | 1             | 7,800               | RS                          |
| USACE Duwamish Navigation Channel - Sections A & B and Turning Basin | 2024               | Various | 140,000           | 8                        | 0                        | 0                               | 0             | 0                   | 8             | 140,000             | EB                          |
| USACE Grays Harbor Navigation Channel                                | 2024               | Various | 3,200,000         | 40                       | 0                        | 0                               | 0             | 0                   | 40            | 3,200,000           | PC/SJ/BU                    |
| USACE Quillayute Navigation Channel and Boat Basin <sup>1</sup>      | 2024               | VL - M  | 97,990            | 7                        | 0                        | 0                               | 0             | 0                   | 7             | 97,990              | BU                          |
| USACE Swinomish Federal Navigation Channel                           | 2024               | L       | 400,000           | 4                        | 0                        | 0                               | 0             | 0                   | 4             | 400,000             | PG/RS                       |
| <b>DY24 Totals</b>                                                   |                    |         | <b>3,932,752</b>  |                          |                          |                                 |               | <b>0</b>            |               | <b>3,932,752</b>    |                             |
| Day Island Yacht Club                                                | 2025               | M       | 24,438            | 2                        | 1                        | 1                               | 0             | 0                   | 2             | 24,438              | CB                          |
| Duwamish Yacht Club, Duwamish River                                  | 2025               | H       | 45,750            | 13                       | 4                        | 0                               | 5             | 17,450              | 9             | 28,300              | EB                          |
| Port of Tacoma, Middle Blair Waterway                                | 2025               | H       | 11,750            | 3                        | 0                        | 0                               | 3             | 11,750              | 0             | 0                   | UP                          |
| Port of Tacoma, TOTE Maritime, Blair Waterway                        | 2025               | M       | 15,000            | 2                        | 0                        | 0                               | 0             | 0                   | 2             | 15,000              | CB                          |
| <b>DY25 Totals</b>                                                   |                    |         | <b>96,938</b>     |                          |                          |                                 |               | <b>29,200</b>       |               | <b>67,738</b>       |                             |
| <b>DY24/25 Totals</b>                                                |                    |         | <b>4,029,690</b>  |                          |                          |                                 |               | <b>29,200</b>       |               | <b>4,000,490</b>    |                             |

Notes:

<sup>1</sup> DMMU7 (12,000 CY) passed DMMP SLs (suitable for open water disposal), but exceeded SMS criteria, which made it unsuitable for beach placement (the preferred placement option).

**Disposal Sites**

AK = Anderson-Ketron (ND)  
 CB = Commencement Bay (ND)  
 CR = Columbia River (D)  
 EB = Elliott Bay (ND)  
 PC = Point Chehalis (D)  
 PG = Port Gardner (ND)  
 PT = Port Townsend (D)  
 RS = Rosario Strait (D)  
 SJ = South Jetty (D)  
 SR = Snake River (ND)

**Disposal Type**

BU = Beneficial Use (includes both aquatic and upland)  
 D = Dispersive  
 FL = Flow Lane  
 ND = Non-Dispersive  
 UP = Upland Disposal  
 WB = Willapa Bay  
 NA = Not Applicable

**Table 12. DY24/25 Projects with Z-Sample Analysis**

| PROJECT                                                | DY   | Rank | Type                  | Reason for Z-Sample Analysis, Post-Dredge Evaluation or Surface-Sediment Testing | Did the New Surface Meet SQS or Antidegradation Policy? |
|--------------------------------------------------------|------|------|-----------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|
| Port of Tacoma, Pierce County Terminal, Blair Waterway | 2024 | M    | Bioaccumulation Study | Chemical exceedances in DMMUs                                                    | Yes                                                     |
| Dagmars Marina                                         | 2025 | M    | Z-sample              | Uncertainty. Surficial material not tested and taken upland.                     | Yes                                                     |
| Day Island Yacht Club                                  | 2025 | M    | Z-sample              | Chemical exceedances in DMMU                                                     | Yes                                                     |
| Duwamish Yacht Club, Duwamish River                    | 2025 | H    | Z-sample and Tier 1   | Chemical exceedances                                                             | Some meet policy. See SDM.                              |
| Port of Tacoma, Middle Blair Waterway                  | 2025 | H    | Z-sample              | Chemical exceedances in DMMUs                                                    | Some meet policy. See SDM.                              |
| Port of Tacoma, TOTE Maritime Terminal                 | 2025 | M    | Z-sample composite    | Chemical exceedances in DMMU                                                     | Yes                                                     |

**Note:** Refer to Appendix C for detailed z-sample testing exceedances.

**Ranking:**

NT = No Test

VL = Very Low

L = Low

LM = Low-moderate

M = Moderate

H = High

Table 13. DY24/25 Tier 1 Determinations

| PROJECT                                                                  | DY   | Total Volume (cy) | Rank | Reason for No-Test Determination                                                                                         | Proposed Disposal Site |
|--------------------------------------------------------------------------|------|-------------------|------|--------------------------------------------------------------------------------------------------------------------------|------------------------|
| Cape George Marina, Discovery Bay, Jefferson County                      | 2024 | 1,000             | ND   | Small volume, frequent maintenance dredging, and previous characterization.                                              | BU                     |
| Little Hangman Creek Restoration near Latah, Washington                  | 2024 | 4,775             | ND   | Small volume, sand/gravel/cobble, onsite BU, removed from sources.                                                       | BU                     |
| Lower Columbia Fish Enhancement Group, Baird Creek Splash Dam Liberation | 2024 | 37,000            | ND   | Remote forested area with no identified sources.                                                                         | OI                     |
| Lower Satsop Reach Restoration                                           | 2024 | 58,299            | ND   | Majority onsite BU, "like on like", no new sources, minimal material going upland                                        | BU/UP                  |
| Northwest Grain Growers Inc.                                             | 2024 | 6,250             | LM   | Previous characterization, material going upland.                                                                        | UP                     |
| Pacific Shellfish                                                        | 2024 | 8,000             | ND   | Renewal of 10 year maintenance dredge permit, remote area with no identified sources.                                    | UP                     |
| Palasz Dock Extension                                                    | 2024 | 264               | M    | Small volume in close proximity to recently characterized navigation channel.                                            | PS                     |
| USACE NWW Snake River Dams Stilling Basins                               | 2024 | 36,150            | ND   | Previous characterizations within Snake River system, no new identified sources                                          | FL                     |
| Discovery Bay - Pedersen Shoreline Restoration                           | 2025 | 1,660             | ND   | Small volume for onsite BU "like on like", majority being disposed of upland.                                            | BU/UP                  |
| East Fork Tulalip Creek Hatchery Intake Sediment Removal                 | 2025 | 3,730             | ND   | Removed from sources, going upland, previously dredged.                                                                  | UP                     |
| Lower Cherry Creek Restoration Project Phase II-III                      | 2025 | 21,518            | ND   | Majority onsite BU, "like on like", no new sources, minimal material going upland.                                       | BU/UP                  |
| Mason's Resort Marina                                                    | 2025 | 7,000             | ND   | Sand, removed from sources, going upland.                                                                                | UP                     |
| Newhalem Creek Hydroelectric Decommissioning                             | 2025 | 500               | ND   | Small volume for onsite BU "like on like", majority being disposed of upland, in close proximity to recent cleanup site. | BU/UP                  |
| Point Roberts Marina                                                     | 2025 | 10,000            | LM   | Sand, "like on like" onsite BU, previously characterized and no new sources.                                             | BU                     |
| West Fork Hoquiam Dam Removal                                            | 2025 | 4,600             | ND   | Coarse-grained, removed from sources, going upland.                                                                      | UP                     |

**Ranking:**

VL = Very Low

L = Low

M = Moderate

LM = Low-moderate

H = High

ND = Not Determined

**Disposal Type**

FL = Flow Lane

OI = Other In-Water

PS= Puget Sound

UP = Upland Disposal

BU = Beneficial Use

Table 14. DY24/25 Recency Extensions

| PROJECT                                    | DY   | Rank             | Sampling Date | Recency Time Limit (years) | End of Recency Period | Planned Dredging Period | New Recency Expiration |
|--------------------------------------------|------|------------------|---------------|----------------------------|-----------------------|-------------------------|------------------------|
| USACE Swinomish Federal Navigation Channel | 2024 | Project specific | --            | 10                         | Sept 2024             | 2024-25                 | Sept 2025              |
| Zittel's Marina                            | 2025 | M                | June 2020     | 5                          | June 2025             | 2025-2033               | Feb 15, 2026           |

**Notes:**

M = Moderate

**Table 15. DY24/25 Project Revisions**

| PROJECT                                                         | DY   | Rank | Description of Project Revision |
|-----------------------------------------------------------------|------|------|---------------------------------|
| East Fork Lewis River Ridgefield Pits Restoration, Clark County | 2024 | ND   | A 12% increase in volume        |

**Ranking:**

ND = Not Determined

NT = No Test

Table 16. DY24/25 Special Studies

| Project                                                           | DY | Rank | Number of Chemistry Samples | Number of Bioassay Samples | Sample Device | COC List                                             |
|-------------------------------------------------------------------|----|------|-----------------------------|----------------------------|---------------|------------------------------------------------------|
| Port of Seattle Terminal 5 Overdredging Non-Compliance Evaluation | 24 | H    | 6                           | ---                        | Grab          | standard DMMP marine COCs, including TBT and Dioxins |
| Shelter Bay Marina Permit Non-compliance Evaluation               | 24 | M    | 1                           | ---                        | Grab          | standard DMMP marine COCs                            |

**Notes:**

COC = Chemical of Concern

TBT = Tributyltin

**Table 17. DY24/25 Supplemental Suitability Determinations**

| Project                                    | DY   | Rank | Number of Chemistry Samples | Number of Bioassay Samples | Sample Device      | COC List |
|--------------------------------------------|------|------|-----------------------------|----------------------------|--------------------|----------|
| Driftwood Key                              | 2024 | LM   | 1                           | 0                          | Push core low tide | DMMP     |
| USACE Snohomish Federal Navigation Channel | 2024 | L    | 0                           | 0                          | --                 | --       |

Notes:

L = Low

LM = Low-moderate

Table 18. Project-Specific Dredged Material Disposal and Beneficial Use Placement, DY24

| Site                                     | Proponent/Project                                             | Dredger                   | Dredge Type | Disposal Volume (cy) | # Barge Loads | #Barges Disposed Inwater "Off Site" | Disposal Dates              | Was a debris screen used? | Volume screened (cy) | Volume debris removed (cy) |
|------------------------------------------|---------------------------------------------------------------|---------------------------|-------------|----------------------|---------------|-------------------------------------|-----------------------------|---------------------------|----------------------|----------------------------|
| <b>Federal Navigation Projects</b>       |                                                               |                           |             |                      |               |                                     |                             |                           |                      |                            |
| EB                                       | Duwanish River Maintenance                                    | American Construction     | CS          | 64,067               | 59            |                                     | Jan 2 - Feb 15, 2024        | No                        | NA                   | NA                         |
| BU-PO                                    | Snohomish River Maintenance                                   | Portable Hydraulic Dredge | HYD         | 93,343               | NA            |                                     | Oct 29, 2023 - Jan 02, 2024 | No                        | NA                   | NA                         |
| BU-JI                                    | Snohomish River Maintenance                                   | Portable Hydraulic Dredge | HYD         | 32,579               | NA            |                                     | Oct 29, 2023 - Jan 02, 2024 | No                        | NA                   | NA                         |
| PC                                       | USACE Grays Harbor                                            | Essayons                  | HD          | 236,068              | NA            |                                     | April 27 - May 23, 2024     | No                        | NA                   | NA                         |
| BU-SB                                    | USACE Grays Harbor                                            | Essayons                  | HD          | 436,383              | NA            |                                     | April 27 - May 23, 2024     | No                        | NA                   | NA                         |
| PC                                       | USACE Grays Harbor                                            | Yaquina                   | HD          | 126,192              | NA            |                                     | April 8 - 22, 2024          | No                        | NA                   | NA                         |
| BU-HMB                                   | USACE Grays Harbor                                            | Yaquina                   | HD          | 28,299               | NA            |                                     | April 8 - 22, 2024          | No                        | NA                   | NA                         |
| PC                                       | USACE Grays Harbor Inner Harbor                               | American Construction     | CS          | 627,445              | 182           |                                     | Dec 2, 2023 - Feb 15, 2024  | No                        | NA                   | NA                         |
| <b>Section 10/404 Permitted Projects</b> |                                                               |                           |             |                      |               |                                     |                             |                           |                      |                            |
| PG                                       | Port of Everett/So. & Central Marina                          | American Construction     | CS          | 3,849                | 4             |                                     | 12/1/2023 to 12/15/2023     | Yes                       | 3,849                |                            |
| PG                                       | Port of Everett/So. & Central Marina (overdredge)             | American Construction     | CS          | 14                   | NA            |                                     | NA                          | Yes                       | 14                   |                            |
| EB                                       | King County/Mercer Island Enatai                              | American Construction     | CS          | 9,546                | 10            |                                     | 7/28/2023 to 1/12/2024      | Yes                       |                      |                            |
| EB                                       | Port of Silverdale/ Boatlaunch                                | American Construction     | CS          | 1,780                | 4             |                                     | 10/9/2023 to 10/12/2023     | Yes                       | 1,780                |                            |
| EB                                       | Port of Silverdale/ Boatlaunch (overdredge)                   | American Construction     | CS          | 194                  | NA            |                                     | NA                          | Yes                       | 194                  |                            |
| PC                                       | Port of Grays Harbor-Round 1/ Terminals 1,2 & 4               | American Construction     | CS          | 39,430               | 13            |                                     | 10/30/2023 to 11/4/2023     | No                        | NA                   | NA                         |
| PC                                       | Port of Grays Harbor -Round 2/ Terminals 1,2 & 4              | American Construction     | CS          | 17,542               | 6             |                                     | 2/11/2024 to 2/12/2024      | No                        | NA                   | NA                         |
| PC                                       | Port of Grays Harbor -Round 2/ Terminals 1,2 & 4 (Overdredge) | American Construction     | CS          | 399                  | NA            |                                     | NA                          | No                        | NA                   | NA                         |

**Open-Water Disposal Sites**

EB = Elliott Bay CR = Columbia River (flow-lane disposal)

PG = Port Gardr BC = Bay Center (flow-lane disposal)

A/K = Anderson SR = inwater bench placement

CB = Commencement Bay

PC = Point Chehalis

**Beneficial Use Sites**

SB = South Beach

JI = Jetty Island

PO = Parcel O

BN = Beach Nourishment

HMB = Half Moon Bay

**Dredge Types**

CS = Clamshell Dredge

HD = Hopper Dredge

HYD = Hydraulic Dredge

NA = Not applicable

Table 19. Project-Specific Dredged Material Disposal and Beneficial Use Placement, DY25

| Site                                     | Proponent/Project                                              | Dredger               | Dredge Type | Disposal Volume (cy) | # Barge Loads | #Barges Disposed Inwater "Off Site" | Disposal Dates                                     | Was a debris screen used? | Volume screened (cy) | Volume debris removed (cy) |
|------------------------------------------|----------------------------------------------------------------|-----------------------|-------------|----------------------|---------------|-------------------------------------|----------------------------------------------------|---------------------------|----------------------|----------------------------|
| <b>Federal Navigation Projects</b>       |                                                                |                       |             |                      |               |                                     |                                                    |                           |                      |                            |
| PC                                       | Grays Harbor Inner                                             | American Construction | CS          | 1,230,780            | 394           |                                     | July 7 - Sept 28, 2024; Dec 2, 2024 - Jan 30, 2025 | No                        | NA                   | NA                         |
| RS                                       | Swinomish Channel Maintenance                                  | American Construction | CS          | 98,735               | 102           | 1                                   | Sept 30, 2024 - Jan 19, 2025                       | No                        | NA                   | NA                         |
| PG                                       | Snohomish River Maintenance                                    | HME                   | CS          | 250,289              | 128           |                                     | Jan 4 - Feb 10, 2025                               | No                        | NA                   | NA                         |
| PC                                       | USACE Grays Harbor                                             | Essayons              | HD          | 149,725              | 150           |                                     | Apr 12 - May 12, 2025                              | No                        | NA                   | NA                         |
| BU-SB                                    | USACE Grays Harbor                                             | Essayons              | HD          | 568,722              | 150           |                                     | Apr 12 - May 12, 2025                              | No                        | NA                   | NA                         |
| SJ                                       | USACE Grays Harbor                                             | Essayons              | HD          | 4,535                | 150           |                                     | Apr 12 - May 12, 2025                              | No                        | NA                   | NA                         |
| PC                                       | USACE Grays Harbor                                             | Yaquina               | HD          | 106,002              | 139           |                                     | Apr 9 - 22, 2025                                   | No                        | NA                   | NA                         |
| BU-HMB                                   | USACE Grays Harbor                                             | Yaquina               | HD          | 15,733               | 139           |                                     | Apr 9 - 22, 2025                                   | No                        | NA                   | NA                         |
| <b>Section 10/404 Permitted Projects</b> |                                                                |                       |             |                      |               |                                     |                                                    |                           |                      |                            |
| PC                                       | Port of Grays Harbor -Round 1/ Terminals 2 & 4                 | American Construction | CS          | 18,584               | 6             |                                     | 8/8/2024 to 8/11/2024                              | No                        |                      |                            |
| CB                                       | Port of Tacoma/ TOTE Maritime Alaska                           | American              | CS          | 9,797                | 15            |                                     | 1/30/2025 to 2/14/2025                             | Yes                       |                      |                            |
| CB                                       | Port of Tacoma/ TOTE Maritime Alaska (Overdredge Volume)       | American              | CS          | 145                  | N/A           |                                     | N/A                                                | Yes                       |                      |                            |
| CB                                       | Port of Tacoma/ PCT Pierce County Terminal                     | American              | CS          | 17,354               | 16            |                                     | 2/6/2025 to 2/16/2025                              | Yes                       |                      |                            |
| CB                                       | Port of Tacoma/ PCT Pierce County Terminal (Overdredge volume) | American              | CS          | 444                  | N/A           |                                     | N/A                                                |                           |                      |                            |
| PC                                       | Port of Grays Harbor Round 2/ Terminals 1,2,3,4                | American              | CS          | 59,576               | 20            |                                     | 2/1/2025 - 2/9/2025                                | No                        |                      |                            |
| PC                                       | Port of Grays Harbor Round 1/Terminals 2 & 4                   | American              | CS          | 21,268               | 7             |                                     | 8/4/2025 - 8/6/2025                                | No                        |                      |                            |

**Open-Water Disposal Sites**

EB = Elliott Bay  
 PG = Port Gardner  
 A/K = Anderson Ketron  
 CB = Commencement Bay  
 PC = Point Chehalis  
 RS = Rosario Strait (D)  
 CR = Columbia River (flow-lane disposal)  
 BC = Bay Center (flow-lane disposal)

**Beneficial Use Sites**

SB = South Beach  
 JI = Jetty Island  
 PO = Parcel O  
 BN = Beach Nourishment  
 HMB = Half Moon Bay

**Dredge Types**

CS = Clamshell Dredge  
 HD = Hopper Dredge  
 HYD = Hydraulic Dredge

Table 20. DY24/25 Disposal/Placement Summary

| Disposal/Placement Sites                |                                 |       |               |                   |               |                   |
|-----------------------------------------|---------------------------------|-------|---------------|-------------------|---------------|-------------------|
|                                         |                                 |       | DY2024        |                   | DY2025        |                   |
| Dredging Location                       | Placement Site                  | Type  | # of Projects | Total Volume (cy) | # of Projects | Total Volume (cy) |
| Puget Sound                             | Commencement Bay                | OW-ND | 0             | 0                 | 2             | 27,740            |
|                                         | Elliott Bay                     | OW-ND | 3             | 75,587            | 0             | 0                 |
|                                         | Port Gardner                    | OW-ND | 1             | 3,863             | 1             | 250,289           |
|                                         | Rosario Strait                  | OW-D  | 0             | 0                 | 1             | 98,735            |
|                                         | Parcel O                        | BU    | 1             | 93,343            | 0             | 0                 |
|                                         | Jetty Island                    | BU    | 1             | 32,579            | 0             | 0                 |
|                                         | Beach Nourishment               | BN    | 0             | 0                 | 0             | 0                 |
|                                         | Upland                          | UD    | 0             | 0                 | 0             | 0                 |
| Grays Harbor                            | Point Chehalis                  | OW-D  | 4             | 1,047,076         | 3             | 1,585,935         |
|                                         | South Beach                     | BU    | 1             | 436,383           | 0             | 568,722           |
|                                         | South Jetty                     | OW-D  | 0             | 0                 | 0             | 4,535             |
|                                         | Half Moon Bay                   | BU    | 1             | 28,299            | 0             | 15,733            |
|                                         | near Westport                   | UD    | 0             | 0                 | 0             | 0                 |
| Willapa Bay                             | Tokeland flow lane              | OW-D  | 0             | 0                 | 0             | 0                 |
| Quillayute                              | First Beach                     | BU    | 0             | 0                 | 0             | 0                 |
|                                         | Rialto Beach                    | BU    | 0             | 0                 | 0             | 0                 |
| Columbia River Basin                    | Baker Bay                       | FL    | 0             | 0                 | 0             | 0                 |
| Snake River                             | RM 118 near Bishop Bar          | OP-ND | 0             | 0                 | 0             | 0                 |
| Disposal/Placement Types - SubTotals    |                                 |       |               |                   |               |                   |
| Puget Sound                             | Total open-water disposal       |       | 4             | 79,450            | 4             | 376,764           |
|                                         | Total beneficial use            |       | 2             | 125,922           | 0             | 0                 |
|                                         | Total upland disposal           |       | 0             | 0                 | 0             | 0                 |
| Grays Harbor                            | Total open-water disposal       |       | 4             | 1,047,076         | 3             | 1,590,470         |
|                                         | Total beneficial use            |       | 2             | 464,682           | 0             | 584,455           |
|                                         | Total upland disposal           |       | 0             | 0                 | 0             | 0                 |
| Willapa Bay                             | Total open-water disposal       |       | 0             | 0                 | 0             | 0                 |
| Quillayute                              | Total beneficial use            |       | 0             | 0                 | 0             | 0                 |
| Columbia River Basin                    | Total flow-lane disposal        |       | 0             | 0                 | 0             | 0                 |
| Snake River                             | Total open-water non-dispersive |       | 0             | 0                 | 0             | 0                 |
| Disposal/Placement Types - Grand Totals |                                 |       |               |                   |               |                   |
| All sites                               | Grand total open-water disposal |       |               | 1,126,526         |               | 1,967,234         |
|                                         | Grand total beneficial use      |       |               | 590,604           |               | 584,455           |
|                                         | Grand total upland disposal     |       |               | 0                 |               | 0                 |
| Grand total all disposal/placement:     |                                 |       |               | 1,717,130         |               | 2,551,689         |

Notes:

This Biennial Report does not include dredging volumes for projects in which DMMP had no involvement (e.g. Superfund dredging with upland disposal)

BU = Beneficial Use

OW-D = open-water, dispersive

OW-ND = open-water, non-dispersive

UD = upland disposal

Table 21. Cumulative Site-Use Summary

| Disposal Site                                     | Dredging Years Used                                                                                                        | Volume Disposed DY 2024/2025 | Cumulative Volumes Disposed (cy) | Average Annual Disposal Volume (cy) |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|-------------------------------------|
| <b>PUGET SOUND (Central)</b>                      |                                                                                                                            | <b>1989 – 2025 (36 yrs)</b>  |                                  |                                     |
| Commencement Bay (ND)                             | 89, 91, 95, 96, 98, 99, 00, 01, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 16, 17, 21, 22, 25                             | 27,740                       | 8,739,652                        | 242,768                             |
| Elliott Bay (ND)                                  | 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 00, 01, 02, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24 | 75,587                       | 3,481,144                        | 96,698                              |
| Port Gardner (ND)                                 | 90, 91, 93, 94, 95, 96, 97, 02, 06, 07, 08, 09, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 25                         | 254,152                      | 4,377,778                        | 121,605                             |
| <b>PUGET SOUND (North / South)</b>                |                                                                                                                            | <b>1990 – 2025 (35 yrs)</b>  |                                  |                                     |
| Anderson/Ketron (ND)                              | 93, 95, 04, 05, 07, 08, 12, 14                                                                                             | 0                            | 157,215                          | 4,492                               |
| Bellingham Bay (ND)                               | 93, 96, 98                                                                                                                 | 0                            | 78,883                           | 2,254                               |
| Port Angeles (D)                                  | 96                                                                                                                         | 0                            | 22,344                           | 638                                 |
| Port Townsend (D)                                 | 93, 98, 99, 07, 09, 10                                                                                                     | 0                            | 54,777                           | 1,565                               |
| Rosario Strait (D)                                | 91, 92, 93, 94, 95, 96, 98, 99, 02, 03, 04, 05, 06, 07, 09, 11, 12, 13, 15, 16, 18, 19, 20, 23, 25                         | 98,735                       | 2,787,362                        | 79,639                              |
| <b>PUGET SOUND (Total)</b>                        |                                                                                                                            | <b>456,214</b>               | <b>19,699,155</b>                | <b>549,660</b>                      |
| <b>GRAYS HARBOR</b>                               |                                                                                                                            | <b>1996 – 2025 (29 yrs)</b>  |                                  |                                     |
| Point Chehalis (D)                                | 96, 97, 98, 99, 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25     | 2,633,011                    | 29,201,250                       | 1,006,940                           |
| South Jetty (D)                                   | 96, 97, 98, 99, 00, 01, 02, 03, 04, 05, 06, 07, 09, 11, 12, 17, 18, 19, 20, 21, 22, 23                                     | 4,535                        | 14,935,589                       | 515,020                             |
| Half Moon Bay (BU)                                | 96, 97, 98, 99, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 17, 21, 22, 23, 24                                         | 44,032                       | 3,383,101                        | 116,659                             |
| South Beach (BU) (2001-2025)                      | 01, 02, 04, 05, 06, 09, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 23, 24                                                     | 1,005,105                    | 6,675,295                        | 278,137                             |
| Southwest (3.9 Mile) Ocean Site (D)               | 03, 04                                                                                                                     | 0                            | 97,831                           | 3,373                               |
| <b>GRAYS HARBOR (Total)</b>                       |                                                                                                                            | <b>3,686,683</b>             | <b>54,293,066</b>                | <b>1,920,129</b>                    |
| <b>WILLAPA BAY</b>                                |                                                                                                                            | <b>1996 – 2025 (29 yrs)</b>  |                                  |                                     |
| Cape Shoalwater (D)                               | 00, 03                                                                                                                     | 0                            | 251,095                          | 8,658                               |
| Goose Point (D)                                   | 99, 03, 06                                                                                                                 | 0                            | 205,977                          | 7,103                               |
| Tokeland (FLD) (2010-2025)                        | 10, 11, 15, 16, 19                                                                                                         | 0                            | 134,500                          | 8,967                               |
| Bay Center (FLD) (2010-2025)                      | 14, 17                                                                                                                     | 0                            | 20,500                           | 1,367                               |
| <b>WILLAPA BAY (Total)</b>                        |                                                                                                                            | <b>0</b>                     | <b>612,072</b>                   | <b>26,094</b>                       |
| <b>QUILLAYUTE</b>                                 |                                                                                                                            | <b>2008 – 2025 (17 yrs)</b>  |                                  |                                     |
| Sites A, 1, 2A, B, First Beach, Rialto Beach (BU) | 08, 10, 15, 16, 18, 21, 23                                                                                                 | 0                            | 332,231                          | 19,543                              |
| <b>QUILLAYUTE (Total)</b>                         |                                                                                                                            | <b>0</b>                     | <b>332,231</b>                   | <b>19,543</b>                       |
| <b>Totals (all sites)</b>                         |                                                                                                                            | <b>4,142,897</b>             | <b>74,936,524</b>                | <b>2,515,426</b>                    |

Notes:

ND = non-dispersive; D = dispersive; BU = beneficial use; FLD = flow lane disposal

**Table 22. Puget Sound Non-dispersive Sites: Cumulative Disposal Volumes vs. Site Capacity**

| Disposal Site                 | Range of Years Open | # of Years Open | Cumulative Volume (cy) | Average Annual Volume (cy/yr) | Site Capacity <sup>1</sup> (cy) | Percent of Site Capacity | Estimated Time to Reach Site Capacity <sup>2</sup> (Years) |
|-------------------------------|---------------------|-----------------|------------------------|-------------------------------|---------------------------------|--------------------------|------------------------------------------------------------|
| Port Gardner                  | 1989-2025           | 36              | 4,377,778              | 121,605                       | 9,000,000                       | 49%                      | 38                                                         |
| Elliott Bay                   | 1989-2025           | 36              | 3,481,144              | 96,698                        | 9,000,000                       | 39%                      | 57                                                         |
| Bellingham Bay <sup>3</sup>   | 1990-2025           | 35              | 78,883                 | 2,254                         | 9,000,000                       | 1%                       | > 100                                                      |
| Commencement Bay <sup>4</sup> | 1989-2025           | 36              | 8,739,652              | 242,768                       | 23,000,000                      | 38%                      | 59                                                         |
| Anderson/Ketron               | 1990-2025           | 35              | 157,215                | 4,492                         | 9,000,000                       | 2%                       | > 100                                                      |

<sup>1</sup> Site capacity estimated in Phase I and II Disposal Site Selection Technical Appendices for non-dispersive sites is approximately 9,000,000 cubic yards.

<sup>2</sup> Estimated Time to Reach Site Capacity = (Site Capacity – Cumulative Volume)/average annual disposal volume.

<sup>3</sup> The Bellingham Bay disposal site has not been used since 1998

<sup>4</sup> The capacity of the Commencement Bay site was increased from 9 to 23 million cubic yards following finalization of a 2010 NEPA/SEPA Supplemental Environmental Impact Statement.

**Table 23. Puget Sound Disposal Site Monitoring Survey History**

| Year    | Disposal Site                               | Type of Survey                                                                  |
|---------|---------------------------------------------|---------------------------------------------------------------------------------|
| 1988    | Port Gardner, Elliott Bay, Commencement Bay | Initial Baseline Surveys: Full                                                  |
| 1989    | Bellingham Bay, Anderson/Ketron Island      | Initial Baseline surveys: Full                                                  |
| 1990    | Bellingham Bay                              | Dungeness Crab Density Study                                                    |
| 1990    | Port Gardner                                | Full                                                                            |
| 1990    | Elliott Bay                                 | Partial                                                                         |
| 1991    | Rosario Strait                              | Bathymetric Survey                                                              |
| 1991    | Port Gardner, Bellingham Bay                | Special Study: New Benchmark Station (PG);<br>Tissue Chemistry Protocol (PG/BB) |
| 1992    | Elliott Bay                                 | Full                                                                            |
| 1993    | Bellingham Bay                              | Partial, Side-Scan Sonar Survey                                                 |
| 1994    | Port Gardner                                | Tiered-Full                                                                     |
| 1994    | Rosario Strait                              | Bathymetric Survey                                                              |
| 1995    | Elliott Bay                                 | Side-Scan Sonar Survey (debris evaluation)                                      |
| 1995    | Commencement Bay                            | Full (new baseline)                                                             |
| 1996    | Commencement Bay                            | Partial                                                                         |
| 1998    | Commencement Bay                            | SPI Survey                                                                      |
| 1999    | Rosario Strait                              | Bathymetric Survey                                                              |
| 2000    | Elliott Bay                                 | Full, Special PCB Congener Study, 45-day Bioaccumulation                        |
| 2001    | Commencement Bay                            | Full + Bathymetric Survey                                                       |
| 2002    | Elliott Bay                                 | Tiered-Full, BCOC special study (Lists 1 & 2)                                   |
| 2003    | Commencement Bay                            | Tiered-Full, List 1 & 2 BCOCs                                                   |
| 2004    | Commencement Bay                            | Partial + Bathymetric Survey                                                    |
| 2005    | Commencement Bay                            | SPI Survey + Special Phenol Study                                               |
| 2005    | Anderson/Ketron Island                      | Full (new baseline), List 1 & 2 BCOCs                                           |
| 2005    | Elliott Bay                                 | Special Onsite Chemistry Study                                                  |
| 2006    | Port Gardner                                | Full, Dioxin Baseline, List 1 & 2 BCOCs                                         |
| 2006    | Commencement Bay                            | MBS                                                                             |
| 2007    | Commencement Bay                            | Full + MBS + Tissue BCOCs + Dioxin Baseline                                     |
| 2007    | Bellingham Bay and Elliott Bay              | Dioxin Baseline                                                                 |
| 2008    | Anderson/Ketron Island                      | Post-Disposal Dioxin Evaluation (part of OSV Bold Survey)                       |
| 2009    | Rosario Strait                              | MBS                                                                             |
| 2010    | Port Gardner                                | Tiered-Full, List 1 & 2 BCOCs                                                   |
| 2010    | Puget Sound Dispersive Sites                | Fate & Transport Study                                                          |
| 2013    | Commencement Bay                            | SPI Survey + MBS                                                                |
| 2013    | Elliott Bay                                 | Partial + MBS                                                                   |
| 2014    | Anderson/Ketron Island                      | Fate & Transport Study                                                          |
| 2014    | Anderson/Ketron Island                      | MBS                                                                             |
| 2014    | Elliott Bay                                 | ROV Debris Inspection                                                           |
| 2014/15 | Anderson/Ketron Island                      | Benthic Trawl Survey                                                            |
| 2017    | Commencement Bay                            | Tiered-Full + MBS                                                               |
| 2019    | Rosario Strait                              | MBS                                                                             |
| 2019    | Port Gardner                                | MBS                                                                             |
| 2020    | Port Gardner                                | SPI Survey + Pilot Monitoring + SPME special study                              |
| 2023    | Elliott Bay                                 | SPI Survey + Pilot Monitoring + SPME special study                              |
| 2025    | Port Gardner                                | SPI Survey + Partial Monitoring                                                 |

**Notes:**

BCOC = Bioaccumulative Chemical of Concern

MBS = Multibeam Bathymetric Survey

ROV = Remotely Operated Vehicle

SPI = Sediment Profile Imaging

PG = Port Gardner

BB = Bellingham Bay

**Table 24. Cumulative Disposal Volumes Since Last Monitoring and Projected 2026/2027 Monitoring Events**

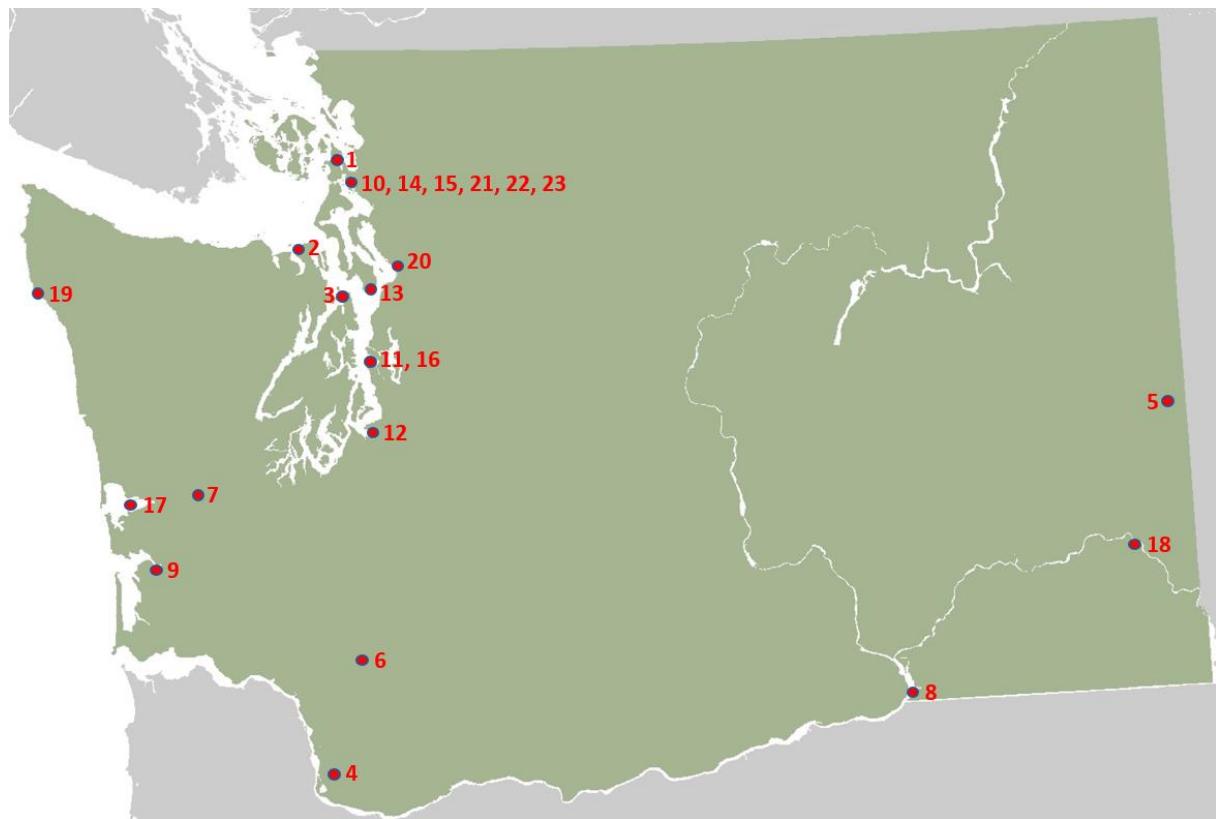
| Site:<br>(Monitoring Soft<br>Triggers)              | A/K<br>(150k cy) | CB<br>(500k cy)  | EB<br>(500k cy) | PG<br>(500k cy) | BB<br>(150k cy) |
|-----------------------------------------------------|------------------|------------------|-----------------|-----------------|-----------------|
| Last monitoring                                     | Partial 2005     | Tiered Full 2017 | Routine 2023    | Partial 2025    | Partial 1993    |
| Cumulative<br>volume since last<br>monitoring event | 129,776          | 49,515           | 75,587          | 0               | 46,000          |
| Projected<br>2026-2027<br>monitoring                | Maybe            | No               | No              | No              | No              |

**Disposal Sites**

A/K = Anderson/Ketron

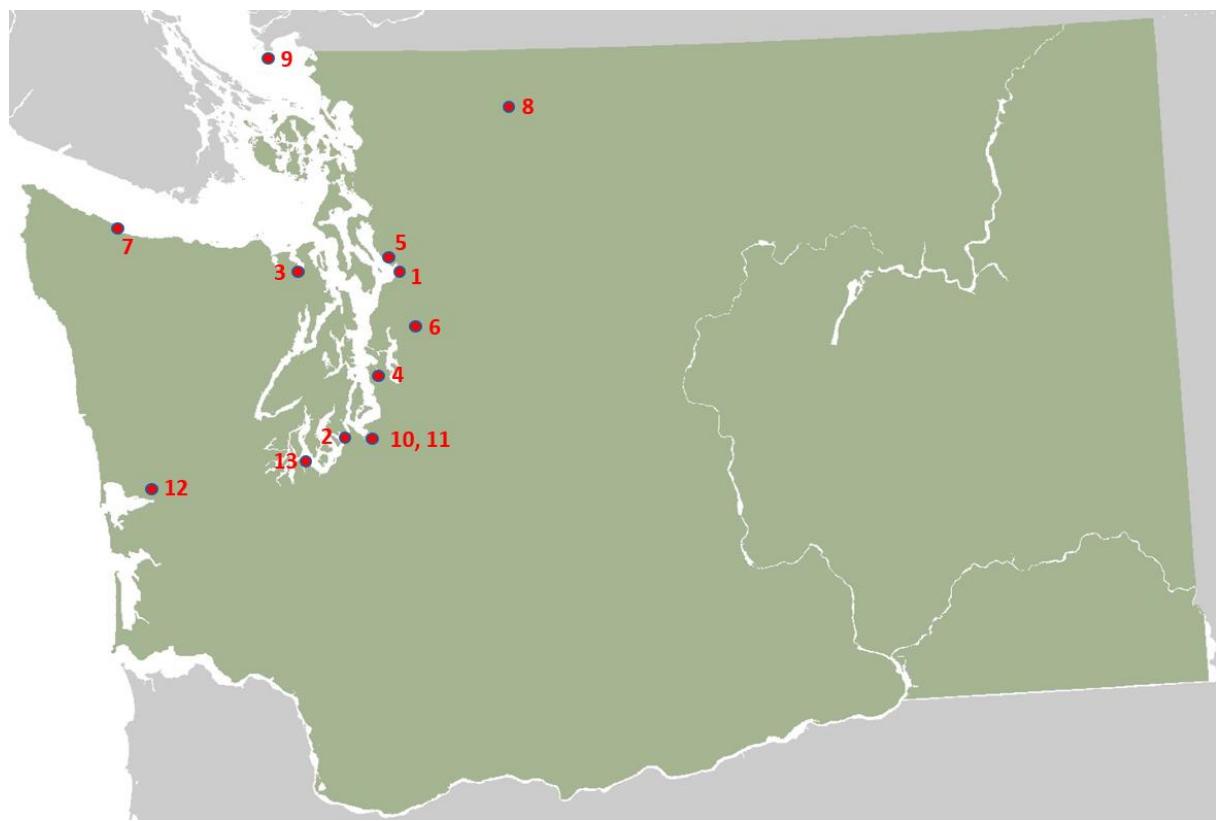
CB = Commencement Bay

EB = Elliott Bay


PG = Port Gardner

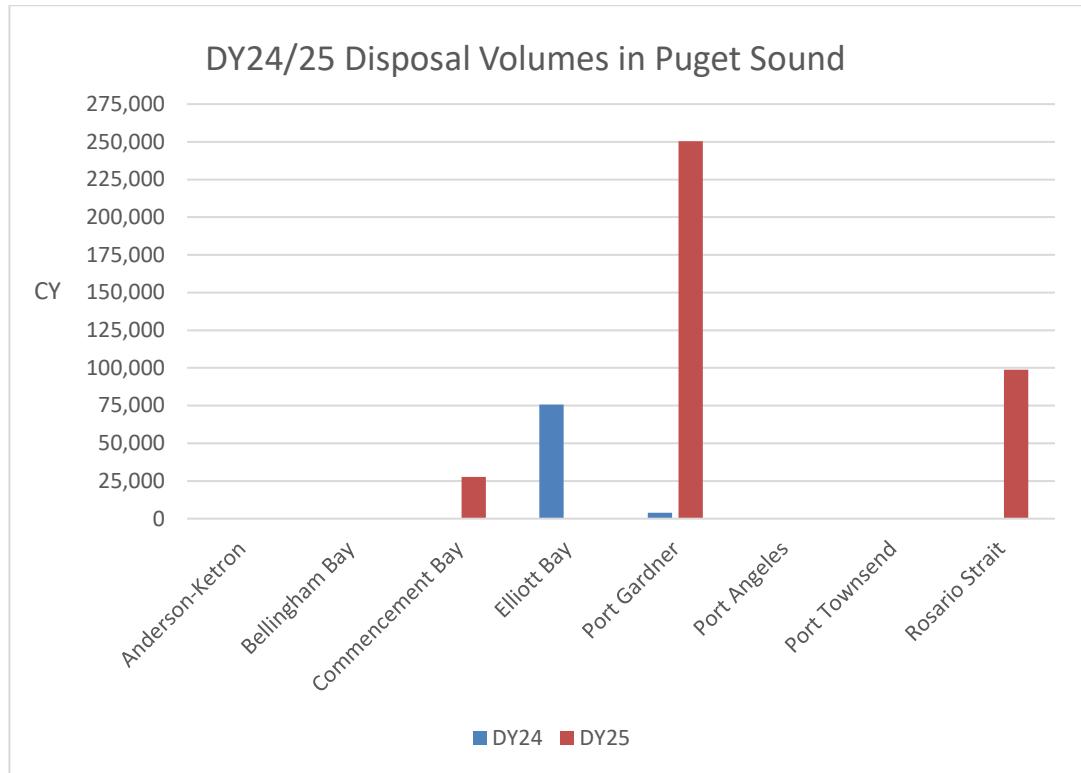
BB = Bellingham Bay

# Figures

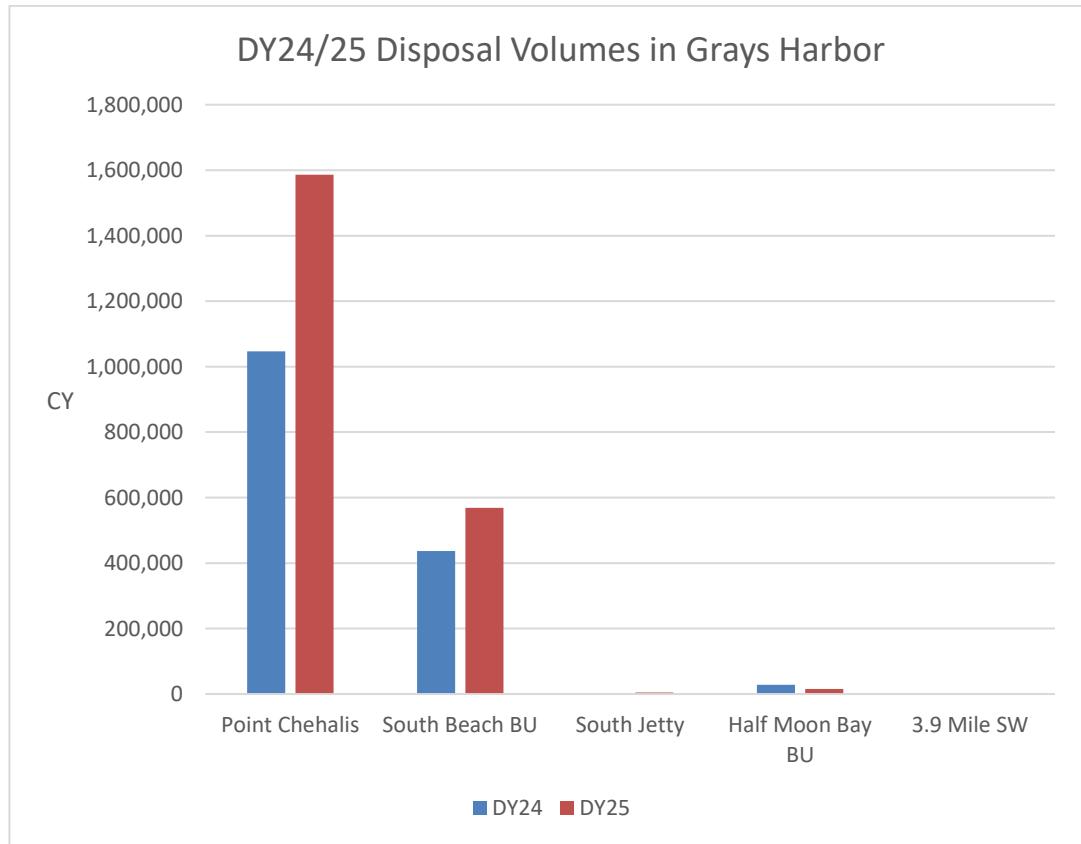

---

**Figure 1. DY24 Project Locations**




Refer to **Table 1** for project numbering key.

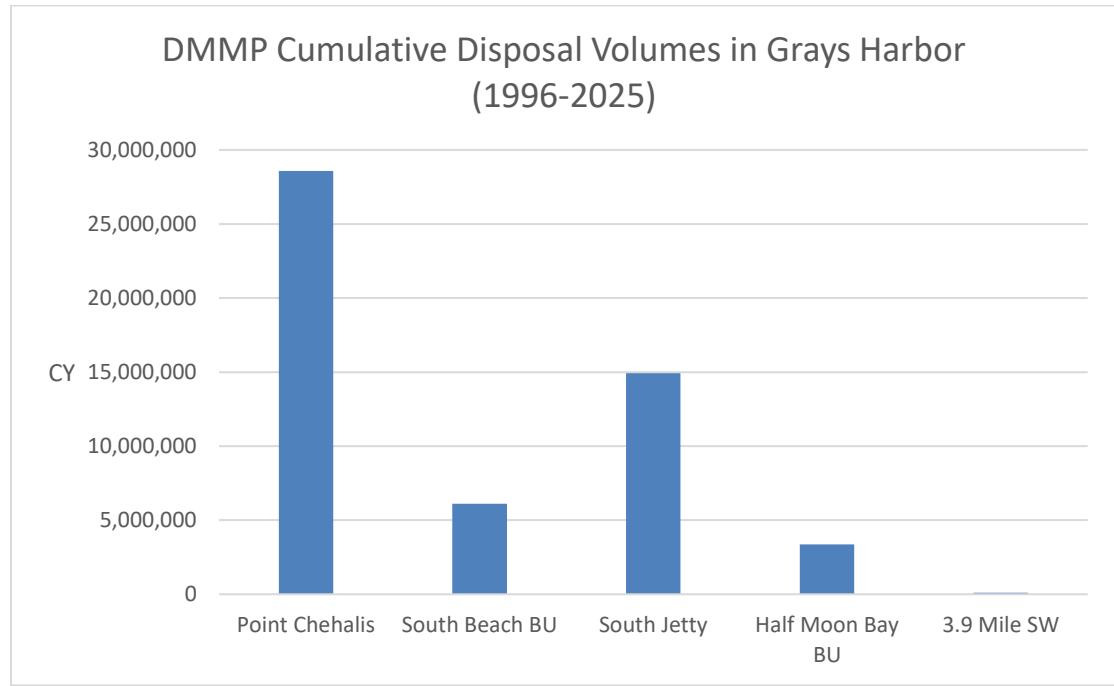
**Figure 2. DY25 Project Locations**




Refer to **Table 2** for project numbering key.

**Figure 3. DY24/25 disposal volumes in Puget Sound**




**Figure 4. DY24/25 disposal volumes in Grays Harbor**



**Figure 5. DMMP cumulative disposal volumes in Puget Sound 1989 – 2025**



**Figure 6. DMMP cumulative disposal volumes in Grays Harbor 1996 – 2025**



## Appendix A. DY24/25 Guideline Values

---

- Table 8-3 from the 2025 DMMP User Manual
- Sediment Management Standards Chapter 173-204 WAC Benthic Criteria

**Table 8-1.** Marine and freshwater sediment chemical criteria for protection of the benthic community.

|                                                          | SMS Freshwater Sediment <sup>a</sup> |                     | SMS Marine Sediment <sup>b</sup> |       | AETs Marine Sediment <sup>c,d</sup> |      |
|----------------------------------------------------------|--------------------------------------|---------------------|----------------------------------|-------|-------------------------------------|------|
| Analyte                                                  | SCO                                  | CSL                 | SCO                              | CSL   | SCO                                 | CSL  |
| <b>Conventional Pollutants</b>                           | <b>mg/kg dw</b>                      |                     |                                  |       |                                     |      |
| Ammonia                                                  | 230                                  | 300                 |                                  |       |                                     |      |
| Total sulfides                                           | 39                                   | 61                  |                                  |       |                                     |      |
| <b>Metals</b>                                            | <b>mg/kg dw</b>                      |                     | <b>mg/kg dw</b>                  |       | <b>mg/kg dw</b>                     |      |
| Arsenic                                                  | 14                                   | 120                 | 57                               | 93    | 57                                  | 93   |
| Cadmium                                                  | 2.1                                  | 5.4                 | 5.1                              | 6.7   | 5.1                                 | 6.7  |
| Chromium                                                 | 72                                   | 88                  | 260                              | 270   | 260                                 | 270  |
| Copper                                                   | 400                                  | 1,200               | 390                              | 390   | 390                                 | 390  |
| Lead                                                     | 360                                  | >1,300 <sup>e</sup> | 450                              | 530   | 450                                 | 530  |
| Mercury                                                  | 0.66                                 | 0.8                 | 0.41                             | 0.59  | 0.41                                | 0.59 |
| Nickel                                                   | 26                                   | 110                 |                                  |       |                                     |      |
| Selenium                                                 | 11                                   | > 20 <sup>e</sup>   |                                  |       |                                     |      |
| Silver                                                   | 0.57                                 | 1.7                 | 6.1                              | 6.1   | 6.1                                 | 6.1  |
| Zinc                                                     | 3200                                 | >4,200 <sup>e</sup> | 410                              | 960   | 410                                 | 960  |
| <b>Organometallics</b>                                   | <b>µg/kg dw</b>                      |                     |                                  |       |                                     |      |
| Monobutyltin                                             | 540                                  | >4,800 <sup>e</sup> |                                  |       |                                     |      |
| Dibutyltin                                               | 910                                  | 130,000             |                                  |       |                                     |      |
| Tributyltin                                              | 47                                   | 320                 |                                  |       |                                     |      |
| Tetrabutyltin                                            | 97                                   | >97 <sup>e</sup>    |                                  |       |                                     |      |
| <b>Organic and Chlorinated Organic Chemicals</b>         | <b>µg/kg dw</b>                      |                     | <b>µg/kg dw</b>                  |       | <b>µg/kg dw</b>                     |      |
| 2,4-Dimethylphenol                                       |                                      |                     | 29                               | 29    | 29                                  | 29   |
| 2-Methylphenol                                           |                                      |                     | 63                               | 63    | 63                                  | 63   |
| 4-Methylphenol <sup>f</sup>                              | 260                                  | 2,000               | 670                              | 670   | 670                                 | 670  |
| Benzoic acid                                             | 2,900                                | 3,800               | 650                              | 650   | 650                                 | 650  |
| Benzyl alcohol                                           |                                      |                     | 57                               | 73    | 57                                  | 73   |
| Pentachlorophenol                                        | 1,200                                | >1,200 <sup>e</sup> | 360                              | 690   | 360                                 | 690  |
| Phenol                                                   | 120                                  | 210                 | 420                              | 1,200 | 420                                 | 1200 |
| <b>Organic and Chlorinated Organic Chemicals (cont.)</b> | <b>µg/kg dw</b>                      |                     | <b>mg/kg OC</b>                  |       | <b>µg/kg dw</b>                     |      |
| 1,2,4-Trichlorobenzene                                   |                                      |                     | 0.81                             | 1.8   | 31                                  | 51   |
| 1,2-Dichlorobenzene                                      |                                      |                     | 2.3                              | 2.3   | 35                                  | 50   |
| 1,4-Dichlorobenzene                                      |                                      |                     | 3.1                              | 9     | 110                                 | 110  |
| Dibenzofuran                                             | 200                                  | 680                 | 15                               | 58    | 540                                 | 540  |
| Hexachlorobenzene                                        |                                      |                     | 0.38                             | 2.3   | 22                                  | 70   |
| Hexachlorobutadiene                                      |                                      |                     | 3.9                              | 6.2   | 11                                  | 120  |
| N-nitrosodiphenylamine                                   |                                      |                     | 11                               | 11    | 28                                  | 40   |

**Table 8-1** (cont). Marine & freshwater sediment chemical criteria for protection of the benthic community.

|                                                              | SMS Freshwater Sediment <sup>a</sup> |                     | SMS Marine Sediment <sup>b</sup> |       | Marine Sediment AETs <sup>c,d</sup> |                     |
|--------------------------------------------------------------|--------------------------------------|---------------------|----------------------------------|-------|-------------------------------------|---------------------|
|                                                              | SCO                                  | CSL                 | SCO                              | CSL   | SCO                                 | CSL                 |
| <b>Phthalates<sup>d</sup></b>                                | <b>µg/kg dw</b>                      |                     | <b>mg/kg OC</b>                  |       | <b>µg/kg dw<sup>d</sup></b>         |                     |
| Bis(2-Ethylhexyl)phthalate                                   | 500                                  | 22,000              | 47                               | 78    | 1,300                               | 1,900               |
| Butylbenzyl phthalate                                        |                                      |                     | 4.9                              | 64    | 63                                  | 900                 |
| Diethyl phthalate                                            |                                      |                     | 61                               | 110   | 200                                 | >1,200 <sup>e</sup> |
| Dimethyl phthalate                                           |                                      |                     | 53                               | 53    | 71                                  | 160                 |
| Di-n-butyl phthalate                                         | 380                                  | 1,000               | 220                              | 1,700 | 1,400                               | 1,400               |
| Di-n-octyl phthalate                                         | 39                                   | >1,100 <sup>e</sup> | 58                               | 4,500 | 6,200                               | 6,200               |
| <b>Pesticides and PCBs</b>                                   | <b>µg/kg dw</b>                      |                     | <b>mg/kg OC</b>                  |       | <b>µg/kg dw</b>                     |                     |
| beta-Hexachlorocyclohexane                                   | 7.2                                  | 11                  |                                  |       |                                     |                     |
| Carbazole                                                    | 900                                  | 1,100               |                                  |       |                                     |                     |
| Dieldrin                                                     | 4.9                                  | 9.3                 |                                  |       |                                     |                     |
| Endrin ketone                                                | 8.5                                  |                     |                                  |       |                                     |                     |
| Total Aroclor <sup>g</sup>                                   | 110                                  | 2,500               | 12                               | 65    | 130                                 | 1,000               |
| Total o,p' and p,p' dichlorodiphenyldichloroethanes (DDDs)   | 310                                  | 860                 |                                  |       |                                     |                     |
| Total o,p' and p,p' dichlorodiphenyldichloroethylenes (DDEs) | 21                                   | 33                  |                                  |       |                                     |                     |
| Total o,p' and p,p' dichlorodiphenyltrichloroethanes (DDTs)  | 100                                  | 8,100               |                                  |       |                                     |                     |
| <b>Polycyclic Aromatic Hydrocarbons</b>                      | <b>µg/kg dw</b>                      |                     | <b>mg/kg OC</b>                  |       | <b>µg/kg dw</b>                     |                     |
| Total PAHs                                                   | 17,000                               | 30,000              |                                  |       |                                     |                     |
| Total LPAH                                                   |                                      |                     | 370                              | 780   | 5,200                               | 5,200               |
| 2-Methylnaphthalene                                          |                                      |                     | 38                               | 64    | 670                                 | 670                 |
| Acenaphthene                                                 |                                      |                     | 16                               | 57    | 500                                 | 500                 |
| Acenaphthylene                                               |                                      |                     | 66                               | 66    | 1,300                               | 1,300               |
| Anthracene                                                   |                                      |                     | 220                              | 1,200 | 960                                 | 960                 |
| Fluorene                                                     |                                      |                     | 23                               | 79    | 540                                 | 540                 |
| Naphthalene                                                  |                                      |                     | 99                               | 170   | 2,100                               | 2,100               |
| Phenanthrene                                                 |                                      |                     | 100                              | 480   | 1,500                               | 1,500               |
| Total HPAH                                                   |                                      |                     | 960                              | 5,300 | 12,000                              | 17,000              |
| Benz[a]anthracene                                            |                                      |                     | 110                              | 270   | 1,300                               | 1,600               |
| Benzo[a]pyrene                                               |                                      |                     | 99                               | 210   | 1,600                               | 1,600               |
| Benzo[g,h,i]perylene                                         |                                      |                     | 31                               | 78    | 670                                 | 720                 |
| Chrysene                                                     |                                      |                     | 110                              | 460   | 1,400                               | 2,800               |
| Dibenzo[a,h]anthracene                                       |                                      |                     | 12                               | 33    | 230                                 | 230                 |
| Fluoranthene                                                 |                                      |                     | 160                              | 1,200 | 1,700                               | 2,500               |
| Indeno[1,2,3-c,d]pyrene                                      |                                      |                     | 34                               | 88    | 600                                 | 690                 |
| Pyrene                                                       |                                      |                     | 1,000                            | 1,400 | 2,600                               | 3,300               |
| Total benzofluoranthenes                                     |                                      |                     | 230                              | 450   | 3,200                               | 3,600               |

**Table 8-1** (cont.). Marine/freshwater sediment chemical criteria for protection of the benthic community.

| Analyte                            | SMS Freshwater Sediment <sup>a</sup> |       | SMS Marine Sediment <sup>b</sup> |     | Marine Sediment AETs <sup>c,d</sup> |     |
|------------------------------------|--------------------------------------|-------|----------------------------------|-----|-------------------------------------|-----|
|                                    | SCO                                  | CSL   | SCO                              | CSL | SCO                                 | CSL |
| <b>Bulk Petroleum Hydrocarbons</b> | <b>mg/kg dw</b>                      |       |                                  |     |                                     |     |
| TPH-Diesel                         | 340                                  | 510   |                                  |     |                                     |     |
| TPH-Residual                       | 3,600                                | 4,400 |                                  |     |                                     |     |

a, All freshwater values are dry weight normalized.

b, Marine values are dry weight normalized for metals and polar organics and normalized to total organic carbon for nonpolar organics.

c, When total organic carbon is outside the range of 0.5 – 3.5%, Ecology may compare to both the TOC normalized criteria and the dry-weight AET values. When total organic carbon values are  $\geq 5\%$ , analysis of total volatile solids is recommended.

d, Dry weight AETs for phthalates are derived from Barrick et.al, 1988. The SCO is established as the lowest AET and the CSL is the 2<sup>nd</sup> lowest AET, consistent with the dry weight AETs for the other SMS chemicals. These differ from the DMMP values for phthalates which were updated in 2005, based on additional bioassay endpoints and synoptic chemistry/bioassay data. Bioassays may be used in place of these AETs if necessary.

e, “greater than” value indicates that the upper bound toxicity level is unknown, but is known to be above the concentration shown.

f, 3-methylphenol and 4-methylphenol may not be able to be separated. In this case 4-methylphenol may be reported as the sum of the 3- and 4-methylphenol isomers. See Appendix N for more detail.

g, Upon approval by Ecology on a case-by-case basis, Total PCB congeners may be used as a direct substitute for Total PCB Aroclors to verify compliance with the CSL benthic criteria (i.e., the sum of Total congeners value can substitute for the sum of Total Aroclors), but not the SCO benthic criteria. If the benthic SCO is exceeded, bioassays should be analyzed.

TABLE 8-3. DMMP COCS AND REGULATORY GUIDELINES

| STANDARD CHEMICALS OF CONCERN           | CHEMICAL                                     | CAS <sup>(1)</sup> NUMBER        | USE FOR MARINE PROJECTS |        |               | USE FOR FRESHWATER PROJECTS WITHIN DMMP JURISDICTION |         |
|-----------------------------------------|----------------------------------------------|----------------------------------|-------------------------|--------|---------------|------------------------------------------------------|---------|
|                                         |                                              |                                  | DMMP MARINE GUIDELINES  |        |               | DMMP/SMS FRESHWATER                                  |         |
|                                         |                                              |                                  | SL                      | BT     | ML            | SL1                                                  | SL2     |
| METALS (mg/kg dry weight)               |                                              |                                  |                         |        |               |                                                      |         |
|                                         | Antimony                                     | 7440-36-0                        | 150                     | --     | 200           | --                                                   | --      |
|                                         | Arsenic                                      | 7440-38-2                        | 57                      | 507.1  | 700           | 14                                                   | 120     |
|                                         | Cadmium                                      | 7440-43-9                        | 5.1                     | --     | 14            | 2.1                                                  | 5.4     |
|                                         | Chromium                                     | 7440-47-3                        | 260                     | --     | --            | 72                                                   | 88      |
|                                         | Copper                                       | 7440-50-8                        | 390                     | --     | 1,300         | 400                                                  | 1,200   |
|                                         | Lead                                         | 7439-92-1                        | 450                     | 975    | 1,200         | 360                                                  | > 1,300 |
|                                         | Mercury                                      | 7439-97-6                        | 0.41                    | 1.5    | 2.3           | 0.66                                                 | 0.8     |
|                                         | Nickel                                       | 7440-02-0                        | --                      | --     | --            | 38 <sup>(2)</sup>                                    | 110     |
|                                         | Selenium                                     | 7782-49-2                        | --                      | 3      | --            | 11                                                   | >20     |
|                                         | Silver                                       | 7440-22-4                        | 6.1                     | --     | 8.4           | 0.57                                                 | 1.7     |
|                                         | Zinc                                         | 7440-66-6                        | 410                     | --     | 3,800         | 3,200                                                | >4,200  |
| ORGANOMETALLIC COMPOUNDS <sup>(3)</sup> |                                              |                                  |                         |        |               |                                                      |         |
|                                         | Tributyltin ion (interstitial water; ug/L)   | 36643-28-4                       | --                      | 0.15   | --            | --                                                   | --      |
|                                         | Tributyltin ion (bulk; ug/kg) <sup>(4)</sup> | 36643-28-4                       | --                      | 73     | --            | 47                                                   | 320     |
|                                         | Monobutyltin ion (bulk; ug/kg)               | 78763-54-9                       | --                      | --     | --            | 540                                                  | >4,800  |
|                                         | Dibutyltin ion (bulk; ug/kg)                 | 10-53-502                        | --                      | --     | --            | 910                                                  | 130,000 |
|                                         | Tetrabutyltin ion (bulk; ug/kg)              | 1461-25-2                        | --                      | --     | --            | 97                                                   | >97     |
| PAHs (µg/kg dry weight)                 |                                              |                                  |                         |        |               |                                                      |         |
|                                         | Naphthalene                                  | 91-20-3                          | 2,100                   | --     | 2,400         | --                                                   | --      |
|                                         | Acenaphthylene                               | 208-96-8                         | 560                     | --     | 1,300         | --                                                   | --      |
|                                         | Acenaphthene                                 | 83-32-9                          | 500                     | --     | 2,000         | --                                                   | --      |
|                                         | Fluorene                                     | 86-73-7                          | 540                     | --     | 3,600         | --                                                   | --      |
|                                         | Phenanthrene                                 | 85-01-8                          | 1,500                   | --     | 21,000        | --                                                   | --      |
|                                         | Anthracene                                   | 120-12-7                         | 960                     | --     | 13,000        | --                                                   | --      |
|                                         | 1-Methylnaphthalene <sup>(5)</sup>           | 90-12-0                          | --                      | --     | --            | --                                                   | --      |
|                                         | 2-Methylnaphthalene <sup>(5)</sup>           | 91-57-6                          | 670                     | --     | 1,900         | --                                                   | --      |
|                                         | <b>Total LPAH</b>                            | —                                | <b>5,200</b>            | —      | <b>29,000</b> | --                                                   | --      |
|                                         | Fluoranthene                                 | 206-44-0                         | 1,700                   | 4,600  | 30,000        | --                                                   | --      |
|                                         | Pyrene                                       | 129-00-0                         | 2,600                   | 11,980 | 16,000        | --                                                   | --      |
|                                         | Benz(a)anthracene                            | 56-55-3                          | 1,300                   | --     | 5,100         | --                                                   | --      |
|                                         | Chrysene                                     | 218-01-9                         | 1,400                   | --     | 21,000        | --                                                   | --      |
|                                         | Benzofluoranthenes (b, j ,k)                 | 205-99-2<br>205-82-3<br>207-08-9 |                         |        |               |                                                      |         |
|                                         |                                              | 3,200                            | --                      | 9,900  | --            | --                                                   | --      |
|                                         | Benzo(a)pyrene                               | 50-32-8                          | 1,600                   | --     | 3,600         | --                                                   | --      |
|                                         | Indeno(1,2,3-c,d)pyrene                      | 193-39-5                         | 600                     | --     | 4,400         | --                                                   | --      |
|                                         | Dibenz(a,h)anthracene                        | 53-70-3                          | 230                     | --     | 1,900         | --                                                   | --      |

TABLE 8-3. DMMP COCS AND REGULATORY GUIDELINES

| CHEMICAL                                      | CAS <sup>(1)</sup> NUMBER | USE FOR MARINE PROJECTS |     |               | USE FOR FRESHWATER PROJECTS WITHIN DMMP JURISDICTION |               |
|-----------------------------------------------|---------------------------|-------------------------|-----|---------------|------------------------------------------------------|---------------|
|                                               |                           | DMMP MARINE GUIDELINES  |     |               | DMMP/SMS FRESHWATER                                  |               |
|                                               |                           | SL                      | BT  | ML            | SL1                                                  | SL2           |
| Benzo(g,h,i)perylene                          | 191-24-2                  | 670                     | --  | 3,200         | --                                                   | --            |
| <b>Total HPAH</b>                             | —                         | <b>12,000</b>           | —   | <b>69,000</b> | —                                                    | —             |
| <b>Total PAHs<sup>(6)</sup></b>               | —                         | —                       | —   | —             | <b>17,000</b>                                        | <b>30,000</b> |
| CHLORINATED HYDROCARBONS (µg/kg dry weight)   |                           |                         |     |               |                                                      |               |
| 1,4-Dichlorobenzene                           | 106-46-7                  | 110                     | --  | 120           | --                                                   | --            |
| 1,2-Dichlorobenzene                           | 95-50-1                   | 35                      | --  | 110           | --                                                   | --            |
| 1,2,4-Trichlorobenzene                        | 120-82-1                  | 31                      | --  | 64            | --                                                   | --            |
| Hexachlorobenzene (HCB)                       | 118-74-1                  | 22                      | 168 | 230           | --                                                   | --            |
| beta-Hexachlorocyclohexane                    | 319-85-7                  | —                       | —   | —             | 7.2                                                  | 11            |
| PHTHALATES (µg/kg dry weight)                 |                           |                         |     |               |                                                      |               |
| Dimethyl phthalate                            | 131-11-3                  | 71                      | --  | 1,400         | --                                                   | --            |
| Diethyl phthalate                             | 84-66-2                   | 200                     | --  | 1,200         | --                                                   | --            |
| Di-n-butyl phthalate                          | 84-74-2                   | 1,400                   | --  | 5,100         | 380                                                  | 1,000         |
| Butyl benzyl phthalate                        | 85-68-7                   | 63                      | --  | 970           | --                                                   | --            |
| Bis(2-ethylhexyl) phthalate                   | 117-81-7                  | 1,300                   | --  | 8,300         | 500                                                  | 22,000        |
| Di-n-octyl phthalate                          | 117-84-0                  | 6,200                   | --  | 6,200         | 39                                                   | >1,100        |
| PHENOLS (µg/kg dry weight)                    |                           |                         |     |               |                                                      |               |
| Phenol                                        | 108-95-2                  | 420                     | --  | 1,200         | 120                                                  | 210           |
| 2-Methylphenol                                | 95-48-7                   | 63                      | --  | 77            | --                                                   | --            |
| 4-Methylphenol                                | 106-44-5                  | 670                     | --  | 3,600         | 260                                                  | 2,000         |
| 2,4-Dimethylphenol                            | 105-67-9                  | 29                      | --  | 210           | --                                                   | --            |
| Pentachlorophenol                             | 87-86-5                   | 400                     | 504 | 690           | 1,200                                                | >1,200        |
| MISCELLANEOUS EXTRACTABLES (µg/kg dry weight) |                           |                         |     |               |                                                      |               |
| Benzyl alcohol <sup>(7)</sup>                 | 100-51-6                  | 57                      | --  | 870           | --                                                   | --            |
| Benzoic acid                                  | 65-85-0                   | 650                     | --  | 760           | 2,900                                                | 3,800         |
| Dibenzofuran                                  | 132-64-9                  | 540                     | --  | 1,700         | 200                                                  | 680           |
| Hexachlorobutadiene                           | 87-68-3                   | 11                      | --  | 270           | --                                                   | --            |
| N-Nitrosodiphenylamine                        | 86-30-6                   | 28                      | --  | 130           | --                                                   | --            |
| Carbazole                                     | 86-74-8                   | —                       | —   | —             | 900                                                  | 1,100         |
| PESTICIDES & PCBs (µg/kg dry weight)          |                           |                         |     |               |                                                      |               |
| 4,4'-DDD                                      | 72-54-8                   | 16                      | --  | --            | —                                                    | —             |
| 4,4'-DDE                                      | 72-55-9                   | 9                       | --  | --            | —                                                    | —             |
| 4,4'-DDT                                      | 50-29-3                   | 12                      | --  | --            | —                                                    | —             |
| sum of 4,4'-DDD, 4,4'-DDE, 4,4'-DDT           | --                        | --                      | 50  | 69            | —                                                    | —             |
| 2,4'-DDD and 4,4'-DDD                         | —                         | —                       | —   | —             | 310                                                  | 860           |
| 2,4'-DDE and 4,4'-DDE                         | —                         | —                       | —   | —             | 21                                                   | 33            |
| 2,4'-DDT and 4,4'-DDT                         | —                         | —                       | —   | —             | 100                                                  | 8,100         |
| Aldrin                                        | 309-00-2                  | 9.5                     | --  | --            | --                                                   | --            |

TABLE 8-3. DMMP COCS AND REGULATORY GUIDELINES

| CHEMICAL                                                                                                 | CAS <sup>(1)</sup> NUMBER | USE FOR MARINE PROJECTS                                                                                                      |                    |       | USE FOR FRESHWATER PROJECTS WITHIN DMMP JURISDICTION |                         |
|----------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|------------------------------------------------------|-------------------------|
|                                                                                                          |                           | DMMP MARINE GUIDELINES                                                                                                       |                    |       | DMMP/SMS FRESHWATER                                  |                         |
|                                                                                                          |                           | SL                                                                                                                           | BT                 | ML    | SL1                                                  | SL2                     |
| Total Chlordane<br>(sum of cis-chlordane, trans-chlordane, cis-nonachlor, trans-nonachlor, oxychlordane) | 5103-71-9                 | 2.8                                                                                                                          | 37                 | --    | --                                                   | --                      |
|                                                                                                          | 5103-74-2                 |                                                                                                                              |                    |       |                                                      |                         |
|                                                                                                          | 5103-73-1                 |                                                                                                                              |                    |       |                                                      |                         |
|                                                                                                          | 39765-80-5                |                                                                                                                              |                    |       |                                                      |                         |
|                                                                                                          | 27304-13-8                |                                                                                                                              |                    |       |                                                      |                         |
|                                                                                                          | Dieldrin                  | 60-57-1                                                                                                                      | 1.9                | --    | 1,700                                                | 4.9                     |
|                                                                                                          | Heptachlor                | 76-44-8                                                                                                                      | 1.5                | --    | 270                                                  | --                      |
| <a href="#">Endrin ketone</a>                                                                            | 53494-70-5                | --                                                                                                                           | --                 | --    | <a href="#">8.5</a>                                  | <a href="#">&gt;8.5</a> |
| Total PCBs (Aroclors) <sup>(8)(9)</sup>                                                                  | --                        | 130                                                                                                                          | 38 <sup>(10)</sup> | 3,100 | 110                                                  | 2,500                   |
| BULK PETROLEUM HYDROCARBONS (mg/kg)                                                                      |                           |                                                                                                                              |                    |       |                                                      |                         |
| <a href="#">TPH – Diesel</a>                                                                             | --                        | --                                                                                                                           | --                 | --    | <a href="#">340</a>                                  | <a href="#">510</a>     |
| <a href="#">TPH – Residual</a>                                                                           | --                        | --                                                                                                                           | --                 | --    | <a href="#">3,600</a>                                | <a href="#">4,400</a>   |
| DIOXINS/FURANS                                                                                           |                           |                                                                                                                              |                    |       |                                                      |                         |
| Total TEQ (ng/kg dry weight)                                                                             | --                        | Puget Sound: see <a href="#">8.3.2</a><br>Grays Harbor: see <a href="#">8.3.3</a><br>Other Waters: see <a href="#">8.3.4</a> |                    |       | See <a href="#">8.3.4</a>                            |                         |

<sup>(1)</sup> Chemical Abstract Service Registry Number

<sup>(2)</sup> The Nickel SL1 value is based on the 90<sup>th</sup> percentile of soil background data from WA state (Ecology, 1994), and was adopted by the DMMP agencies at the 2014 SMARM (DMMP/RSET, 2014b)

<sup>(3)</sup> TBT and dioxins/furans are not standard COCs for marine projects. They may be required on a case-by-case basis (see Sections [8.3](#) and [8.4](#)). All butyltins are required for freshwater projects unless their absence is demonstrated in Tier 1 analysis.

<sup>(4)</sup> Bulk sediment measurement of TBT is recommended for dredged material and Z-sample evaluations, although porewater TBT remains an option. See Section [8.4.2](#) for further details.

<sup>(5)</sup> 1-Methylnaphthalene and 2-Methylnaphthalene are included in the summation of total PAH for freshwater projects. 2-Methylnaphthalene is analyzed for marine projects but is not included in the summation for total LPAHs. 1-Methylnaphthalene is not analyzed for marine projects.

<sup>(6)</sup> Total PAHs for freshwater projects include the sum of all PAHs listed.

<sup>(7)</sup> DMMP agencies will use BPJ to determine the need for biological testing for projects in which benzyl alcohol is the only COC present in project sediments ([DMMP, 2016a](#)).

<sup>(8)</sup> Total PCB Aroclors for marine and freshwater projects are calculated differently. See Section [8.2.3](#) for further details.

<sup>(9)</sup> PCB evaluation for Columbia River projects that use Oregon disposal sites will need coordination with ODEQ and PSET.

<sup>(10)</sup> This value is normalized to total organic carbon and is expressed in mg/kg carbon.

<sup>(11)</sup> Analyses required only when there is sufficient reason-to-believe for presence in a given project or location.

[Analytes printed in blue apply ONLY to freshwater.](#)

## Appendix B. Bioassay Performance Standards and Evaluation Guidelines

---

- Marine Bioassays (Table 9-7 from the 2025 DMMP User Manual)
- Freshwater Bioassays (Table 9-9 from the 2025 DMMP User Manual)

**Table 9-7. Marine Bioassay Performance Standards and Evaluation Guidelines**

| Bioassay                                            | For each test to be considered valid, control and reference must meet the following standards: |                                                        | Test failure assessment guidelines:                                                  |            |                                                        |                           |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------|------------|--------------------------------------------------------|---------------------------|
|                                                     | Negative Control Performance Standard                                                          | Reference Sediment Performance Standard                | Dispersive Disposal Site Interpretation Guidelines                                   |            | Non-dispersive Disposal Site Interpretation Guidelines |                           |
|                                                     |                                                                                                |                                                        | 1-hit rule                                                                           | 2-hit rule | 1-hit rule                                             | 2-hit rule                |
| Amphipod Mortality                                  | $M_c \leq 10\%$                                                                                | $ M_R - M_c  \leq 20\%$                                | $ M_T - M_c  > 20\%$<br>and<br>$M_T$ vs. $M_R$ SD ( $p=.05$ )<br><b>AND</b>          |            |                                                        |                           |
|                                                     |                                                                                                |                                                        | $M_T - M_R > 10\%$                                                                   | NOCN       | $M_T - M_R > 30\%$                                     | NOCN                      |
| Larval Development                                  | $N_c \div I \geq 0.70$                                                                         | $N_R \div N_c \geq 0.65$                               | $N_T \div N_c < 0.80$<br>and<br>$N_T/N_c$ vs. $N_R/N_c$ SD ( $p=.10$ )<br><b>AND</b> |            |                                                        |                           |
|                                                     |                                                                                                |                                                        | $N_R/N_c - N_T/N_c > 0.15$                                                           | NOCN       | $N_R/N_c - N_T/N_c > 0.30$                             | NOCN                      |
| Juvenile Infaunal Polychaete growth test (Neanthes) | $M_c \leq 10\%$<br>and<br>$MIG_c \geq 0.38$<br>mg (dry weight)                                 | $M_R \leq 20\%$<br>and<br>$MIG_R \div MIG_c \geq 0.80$ | $MIG_T \div MIG_c < 0.80$<br>and<br>$MIG_T$ vs. $MIG_R$ SD ( $p=.05$ )<br><b>AND</b> |            |                                                        |                           |
|                                                     |                                                                                                |                                                        | $MIG_T \div MIG_R < 0.70$                                                            | NOCN       | $MIG_T \div MIG_R < 0.50$                              | $MIG_T \div MIG_R < 0.70$ |

**Subscripts:**

M = mortality

N = normal larvae

I = initial count

MIG = mean individual growth rate (mg/individual/day); as ash-free dry weight (AFDW), except for the negative control performance standard

SD = statistically significant difference

NOCN = no other conditions necessary

R = reference sediment

C = negative control

T = test sediment

**Table 9-9. Freshwater Bioassay Performance Standards and Evaluation Guidelines**

| Biological Test/<br>Endpoint <sup>a</sup> | Performance Standard <sup>b</sup>        |                                  | Screening Level 1 (SL1)                                                                      | Screening Level 2 (SL2)                                                                      |
|-------------------------------------------|------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                           | Control <sup>c, d</sup>                  | Reference                        |                                                                                              |                                                                                              |
| <b><i>Hyalella azteca</i></b>             |                                          |                                  |                                                                                              |                                                                                              |
| 10-day mortality                          | $M_C \leq 15\%$                          | $M_R \leq 25\%$                  | $M_T - M_C > 15\%$<br>and<br>$M_T \text{ vs } M_C \text{ SD } (p \leq 0.05)$                 | $M_T - M_C > 25\%$<br>and<br>$M_T \text{ vs } M_C \text{ SD } (p \leq 0.05)$                 |
| 28-day mortality                          | $M_C \leq 20\%$                          | $M_R \leq 30\%$                  | $M_T - M_C > 10\%$<br>and<br>$M_T \text{ vs } M_C \text{ SD } (p \leq 0.05)$                 | $M_T - M_C > 25\%$<br>and<br>$M_T \text{ vs } M_C \text{ SD } (p \leq 0.05)$                 |
| 28-day growth                             | $MIG_C \geq 0.35 \text{ mg/ind}$         | $MIG_R \geq 0.15 \text{ mg/ind}$ | $MIG_T / MIG_C < 0.75$<br>and<br>$MIG_T \text{ vs } MIG_C \text{ SD } (p \leq 0.05)$         | $(MIG_T / MIG_C < 0.60$<br>and<br>$MIG_T \text{ vs } MIG_C \text{ SD } (p \leq 0.05)$        |
| <b><i>Chironomus dilutus</i></b>          |                                          |                                  |                                                                                              |                                                                                              |
| 10-day mortality                          | $M_C \leq 20\%$                          | $M_R \leq 30\%$                  | $M_T - M_C > 20\%$<br>and<br>$M_T \text{ vs } M_C \text{ SD } (p \leq 0.05)$                 | $M_T - M_C > 30\%$<br>and<br>$M_T \text{ vs } M_C \text{ SD } (p \leq 0.05)$                 |
| 10-day growth                             | $MIG_C \geq 0.60 \text{ mg/ind}$<br>AFDW | $MIG_R / MIG_C \geq 0.8$<br>AFDW | $MIG_T / MIG_C < 0.80$<br>and<br>$MIG_T \text{ vs } MIG_C \text{ SD } (p \leq 0.05)$<br>AFDW | $MIG_T / MIG_C < 0.70$<br>and<br>$MIG_T \text{ vs } MIG_C \text{ SD } (p \leq 0.05)$<br>AFDW |
| 20-day mortality                          | $M_C \leq 20\%$                          | $M_R \leq 35\%$                  | $M_T - M_C > 15\%$<br>and<br>$M_T \text{ vs } M_C \text{ SD } (p \leq 0.05)$                 | $M_T - M_C > 25\%$<br>and<br>$M_T \text{ vs } M_C \text{ SD } (p \leq 0.05)$                 |
| 20-day growth                             | $MIG_C \geq 0.60 \text{ mg/ind}$<br>AFDW | $MIG_R / MIG_C \geq 0.8$<br>AFDW | $MIG_T / MIG_C < 0.75$<br>and<br>$MIG_T \text{ vs } MIG_C \text{ SD } (p \leq 0.05)$<br>AFDW | $MIG_T / MIG_C < 0.60$<br>and<br>$MIG_T \text{ vs } MIG_C \text{ SD } (p \leq 0.05)$<br>AFDW |

**Notes:**

M = Mortality; C = Control; R = Reference; T = Test; F = Final; MIG = Mean Individual Growth at time final; ind = individual; mg = milligrams; SD = statistically significant difference; AFDW = Ash-Free Dry Weight.

<sup>a</sup> These tests and parameters were developed based on the most updated American Society for Testing and Materials protocols.

<sup>b</sup> Reference performance standards are provided for times when Ecology or DMMP has approved a freshwater reference sediment site(s) and reference results will be substituted for control in comparing test sediments to guidelines.

<sup>c</sup> The control mortality performance standard for the 20 day test ( $\leq 20\%$ ) has been updated. The agencies may consider, on a case-by-case basis, a 20-day control has met QA/QC requirements if the mortality is  $\leq 32\%$ .

<sup>d</sup> The control growth performance standard for the 20-day test (0.60 mg/individual) is more stringent than for the 10 day test and the agencies may consider, on a case-by-case basis, a 20 day control has met QA/QC requirements if the mean individual growth is at least 0.48 mg/individual.

## Appendix C. DY24/25 Marine and Freshwater Guideline Exceedances

---

- Legend
- Marine DMMU guideline exceedances
- Marine Z-sample guideline exceedances

There were no projects with freshwater guideline exceedances in the DY24/25 Biennium.





| Appendix C. Marine Guideline Exceedances - Z-samples                                                                                                         |                                                                  |                    |                        |                                          |           |                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|------------------------|------------------------------------------|-----------|---------------------|--|
| <b>PROJECT:</b><br><br><b>Date of SD:</b><br><br><b>DY:</b><br><br><b>Freshwater/Marine:</b><br><br><b>DMMU or Sample ID:</b><br><br><b>Assessment Rank:</b> | Port or Tacoma -<br>Pierce County<br>Terminal, Blair<br>Waterway |                    | Duwamish<br>Yacht Club | Port of Tacoma, Middle<br>Blair Waterway |           | Dagmars<br>Marina   |  |
|                                                                                                                                                              | 4/14/2024                                                        |                    | 8/24/2025              | 1/13/2025                                |           | 3/18/2025           |  |
|                                                                                                                                                              | 2024                                                             |                    | 2025                   | 2025                                     |           | 2025                |  |
|                                                                                                                                                              | Marine                                                           |                    | Marine                 | Marine                                   |           | Marine              |  |
|                                                                                                                                                              | DMMU 1<br>z-sample                                               | DMMU 2<br>z-sample | DMMU 1Z                | DMMU 1Z1                                 | DMMU 2 Z1 | DMMU 2Z             |  |
|                                                                                                                                                              | M                                                                |                    | H                      | H                                        |           | M                   |  |
|                                                                                                                                                              |                                                                  |                    |                        |                                          |           |                     |  |
| <b>METALS (mg/kg)</b>                                                                                                                                        |                                                                  |                    |                        |                                          |           |                     |  |
| Mercury                                                                                                                                                      |                                                                  |                    |                        |                                          |           |                     |  |
| <b>PAHs (ug/kg)</b>                                                                                                                                          |                                                                  |                    |                        |                                          |           |                     |  |
| Acenaphthene                                                                                                                                                 |                                                                  |                    |                        |                                          |           |                     |  |
| Anthracene                                                                                                                                                   |                                                                  |                    |                        |                                          |           |                     |  |
| Benz(a)anthracene                                                                                                                                            |                                                                  |                    |                        |                                          |           |                     |  |
| Benzo(a)pyrene                                                                                                                                               |                                                                  |                    |                        |                                          |           |                     |  |
| Benzo(g,h,i)perylene                                                                                                                                         |                                                                  |                    |                        |                                          |           |                     |  |
| Chrysene                                                                                                                                                     |                                                                  |                    |                        |                                          |           |                     |  |
| Dibenzo(a,h)anthracene                                                                                                                                       |                                                                  |                    |                        |                                          |           |                     |  |
| Fluoranthene                                                                                                                                                 |                                                                  |                    |                        |                                          |           |                     |  |
| Fluorene                                                                                                                                                     |                                                                  |                    |                        |                                          |           |                     |  |
| Indeno(1,2,3-c,d)pyrene                                                                                                                                      |                                                                  |                    |                        |                                          |           |                     |  |
| Phenanthrene                                                                                                                                                 |                                                                  |                    |                        |                                          |           |                     |  |
| Pyrene                                                                                                                                                       |                                                                  |                    |                        |                                          |           |                     |  |
| Total benzofluoranthenes (b,j,k)                                                                                                                             |                                                                  |                    |                        |                                          |           |                     |  |
| Total HPAH                                                                                                                                                   |                                                                  |                    |                        |                                          |           |                     |  |
| Total LPAH                                                                                                                                                   |                                                                  |                    |                        |                                          |           |                     |  |
| <b>CHLORINATED HYDROCARBONS (ug/kg)</b>                                                                                                                      |                                                                  |                    |                        |                                          |           |                     |  |
| 1,2-Dichlorobenzene                                                                                                                                          |                                                                  |                    |                        |                                          |           |                     |  |
| 1,2,4-Trichlorobenzene                                                                                                                                       |                                                                  |                    |                        |                                          |           | 0.962 U             |  |
| Hexachlorobenzene                                                                                                                                            |                                                                  |                    |                        |                                          |           | 0.481 U             |  |
| <b>MISCELLANEOUS EXTRACTABLES (ug/kg)</b>                                                                                                                    |                                                                  |                    |                        |                                          |           |                     |  |
| Benzyl Alcohol                                                                                                                                               |                                                                  |                    |                        |                                          |           |                     |  |
| Benzoic Acid                                                                                                                                                 |                                                                  |                    |                        |                                          |           |                     |  |
| Hexachlorobutadiene                                                                                                                                          |                                                                  |                    |                        |                                          |           |                     |  |
| N-Nitrosodiphenylamine                                                                                                                                       |                                                                  |                    |                        |                                          |           |                     |  |
| <b>PESTICIDES AND PCBs (ug/kg)</b>                                                                                                                           |                                                                  |                    |                        |                                          |           |                     |  |
| Total chlordane                                                                                                                                              |                                                                  |                    |                        |                                          |           |                     |  |
| Total PCBs (ug/kg)                                                                                                                                           |                                                                  |                    |                        |                                          |           |                     |  |
| Total PCBs (ug/kg normalized to organic carbon)                                                                                                              |                                                                  |                    |                        |                                          |           |                     |  |
| <b>OTHER CHEMICALS OF CONCERN</b>                                                                                                                            |                                                                  |                    |                        |                                          |           |                     |  |
| Tributyltin (ug/kg bulk)                                                                                                                                     |                                                                  |                    |                        |                                          |           |                     |  |
| Dioxins/Furans (ng/kg TEQ; $u=1/2$ DL)                                                                                                                       | 8.95                                                             | 17.49              | 4.58 J                 | 10.4 J                                   | 11.5 J    |                     |  |
| <b>BIOASSAYS</b>                                                                                                                                             |                                                                  |                    |                        |                                          |           |                     |  |
| Amphipod (marine)                                                                                                                                            |                                                                  |                    |                        |                                          |           |                     |  |
| Larval (marine) - standard protocol                                                                                                                          |                                                                  |                    |                        |                                          |           |                     |  |
| Neanthes Growth Rate (marine) - AFDW endpoint                                                                                                                |                                                                  |                    |                        |                                          |           |                     |  |
| Bioassay Result:                                                                                                                                             |                                                                  |                    |                        |                                          |           |                     |  |
| <b>BIOACCUMULATION</b>                                                                                                                                       |                                                                  |                    |                        |                                          |           |                     |  |
| Bioaccumulation result (P/F)                                                                                                                                 | PASS <sup>BA</sup>                                               | PASS <sup>BA</sup> |                        |                                          |           |                     |  |
| Anti-Degradation PASS/FAIL                                                                                                                                   | PASS <sup>AD</sup>                                               | PASS <sup>AD</sup> | PASS <sup>BPJ</sup>    | FAIL                                     | FAIL      | PASS <sup>BPJ</sup> |  |